
D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 17

www.decide-h2020.eu

Deliverable D4.10

Initial multi-cloud application helpers

Editor(s): Lorenzo Blasi

Responsible Partner: HPE

Status-Version: Final - v1.0

Date: 30/11/2017

Distribution level (CO, PU): PU

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 17

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable: Initial multi-cloud application helpers

Due Date of Delivery to the EC: 30/11/2017

Workpackage responsible for
the Deliverable:

WP4 - Continuous deployment and operation

Editor(s): HPE

Contributor(s): HPE

Reviewer(s): Leire Orue-Echevarria (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP5

Abstract: The deliverable reports the most relevant technical
details of the helpers specifically developed for
applications or parts of applications. This is the
initial version of the deliverable.

Keyword List: Helpers, plugin, scripts, Terraform, provisioning

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This deliverable reflects only the author’s views and
views and the Commission is not responsible for
any use that may be made of the information
contained therein

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 17

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 30/10/2017 First draft version HPE

V0.2 8/11/2017 Added technical descriptions HPE

V0.3 10/11/2017 Added Exec Summary and Conclusions HPE

V0.4 13/11/2017 Finalized all the sections HPE

V0.5 23/11/2017 Updated after internal review HPE

V1.0 23/11/2017 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 17

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 4

List of Tables .. 4

Terms and abbreviations ... 5

Executive Summary ... 6

1 Introduction ... 7

1.1 About this deliverable ... 7

1.2 Suggested reading path ... 7

1.3 Document structure .. 7

2 Functional description ... 8

2.1 Fitting into overall DECIDE ADAPT Architecture ... 9

3 Technical description ... 11

3.1 The Terraform ACSmI provider plugin... 11

3.2 The Preparation scripts ... 14

4 Conclusions .. 16

List of Figures

FIGURE 1. DEPLOYMENT ORCHESTRATOR COMPONENT IN THE ADAPT ARCHITECTURE ... 10
FIGURE 2. THE ACSMI PROVIDER PLUGIN IN THE DEPLOYMENT ORCHESTRATOR ARCHITECTURE 10
FIGURE 3.- RELATIONSHIP BETWEEN TERRAFORM LOGICAL COMPONENTS AND THE PLUGIN.................................... 13

List of Tables

TABLE 1. MAPPING BETWEEN REQUIREMENTS AND FUNCTIONALITIES, WITH DETAILED COVERAGE 9

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 17

www.decide-h2020.eu

Terms and abbreviations

API Application Programming Interface

CPU Central Processing Unit

CSP Cloud Service Provider

DevOps Development and Operations

DoW Description of Work

EC European Commission

GB Giga Bytes

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

KR Key Result

MCSLA Multi-Cloud Service Level Agreement

NCA Native Cloud Application

NFR Non-Functional Requirement

OS Operating System

Protobuf Protocol Buffers (Google’s data interchange format)

QA Quality Assurance

RAM Random-Access Memory

REST Representational State Transfer

SLA Service Level Agreement

SLO Service Level Objective

SQO Service Quality Objective

SSH Secure SHell

ToC Table of Contents

UI User Interface

URI Unified Resource Identifier

URL Unified Resource Locator

UC Use Case

UUID Universally Unique IDentifier

VM Virtual Machine

WP Work Package

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 17

www.decide-h2020.eu

Executive Summary

The main objective of DECIDE project is to provide a novel software framework to design, develop, and
dynamically deploy multi-cloud applications. ADAPT is the tool of the DECIDE framework which aims
to allow continuously deploy and dynamically self-adapt multi-cloud applications.

This deliverable is a result of DECIDE Work Package 4 (“continuous deployment and operation”) and
reports the work done in the first year (Y1) in Task T4.4 (Multi-cloud application helpers) in order to
implement the Helpers.

The Helpers are modules tightly linked with the main DECIDE ADAPT components, Deployment
Orchestrator and Monitoring Manager. Those two components are described in detail in their specific
deliverables, i.e. respectively D4.4 [1] (Initial multi-cloud application deployment and adaptation) and
D4.7 [2] (Initial multi-cloud application monitoring). The overall ADAPT architecture and design is
described in deliverable D4.1. The suggested reading order for Y1 WP4 deliverables is the following:
D4.1, [3] D4.4 [1], D4.7 [2], D4.10 (this deliverable).

This document starts with a functional description (section 2) of the Helpers developed in year 1 (Y1),
enriched with a mapping between the functionalities and ADAPT requirements.

DECIDE ADAPT, as already described in D4.4, uses the open source Terraform1 tool to apply
provisioning and deployment actions. The two Helpers developed in Y1 are described in more detail in
section 0; they support the functionalities of Terraform and its integration with the rest of the DECIDE
framework: the Terraform Plugin allows ADAPT to interface with ACSmI’s implementation and the set
of Preparation scripts to enable setting up the runtime environment for the execution of the multi-
cloud application containers.

In the next year further Helpers will be developed, such as monitoring probes to collect application-
specific metrics and the optional reverse-proxy component to maintain microservices communication
even in case of migration. These new Helpers will be described in the WP4 deliverables planned for Y2.

1 https://www.terraform.io

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 17

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This deliverable reports the work done in Task T4.4 (Multi-cloud application helpers) in the first year
(Y1) of the DECIDE project’s progress. The Helpers, as indicated in deliverable D4.1 (Initial DECIDE
ADAPT Architecture), are ADAPT modules planned for implementing the low-level logics for the
deployment steps, the retrieval of monitoring data, the actions for adapting applications and
implementing what is required for interfacing different cloud platforms.

1.2 Suggested reading path

The architecture of DECIDE ADAPT is described in deliverable D4.1 [3], which is the first document to
read for understanding ADAPT’s requirements, functionalities and architecture.

The Helpers are modules tightly linked with the main DECIDE ADAPT components, Deployment
Orchestrator and Monitoring Manager. The detailed description of those two components is included
in their specific deliverables, i.e. respectively D4.4 (Initial multi-cloud application deployment and
adaptation) [1] and D4.7 (Initial multi-cloud application monitoring) [2]. This deliverable will not
duplicate concepts and details already expressed in D4.4 [1] and D4.7 [2], therefore the suggestion to
the interested readers is to read those two documents in advance, to better understand what is
described in this document.

The suggested reading order for Y1 WP4 deliverables is therefore: D4.1 [3], D4.4 [1], D4.7 [2], D4.10.

1.3 Document structure

This document is composed of two main sections. The first, section 2, describes what the Helpers are
and how they fit in the DECIDE ADAPT architecture. The second, section 0, provides technical details
about the first implementation. The implemented software for the Helpers in Y1 is released as part of
the Deployment Orchestrator deliverable, D4.4 [1], therefore this document does not include
packaging and installation information.

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 17

www.decide-h2020.eu

2 Functional description

The Helpers, as indicated in deliverable D4.1 (Initial DECIDE ADAPT Architecture) [3], are “ADAPT
modules planned for implementing the low-level logic for the deployment steps, the retrieval of
monitoring data, the actions for adapting applications and implementing what is required for
interfacing different cloud platforms”.

Several low-level modules of DECIDE ADAPT will satisfy the definition above and can be considered as
Helpers. Possible examples are:

• Any monitoring probe implemented to collect application-specific metrics, or possibly a
template of such a probe available for the application developer to customize.

• The set of “Preparation scripts” responsible for installing pre-requisite software (such as
Docker, Consul, etc.) in each VM of the multi-cloud application infrastructure (likely managed
by Terraform “provisioners” defined in the Terraform configuration for the VM resources).

• The “Terraform plugin” implemented to interface with ACSmI implementation to start and
release infrastructure resources.

• The optional reverse-proxy component that can be used by applications to define
automatically the routing between microservices endpoints and the containers which provide
them

This deliverable describes the Helpers implemented in Y1: the Terraform Plugin to interface with ACSmI
implementation and the set of Preparation scripts enabling the runtime environment for the multi-
cloud application components.

The Terraform plugin component has been indicated as “ACSmI provider plugin” in deliverable D4.1
[3](sect. 4.1, Deployment components), and described as follows: the ACSmI provider plugin allows to
use ACSmI as an IaaS provider for provisioning the infrastructure resources defined in the deployment
plan. This plugin can be considered a Helper since it allows to interface the underlying cloud platforms.

As indicated in Terraform online documentation2, “a provider in Terraform is responsible for the
lifecycle of a resource: create, read, update, delete. An example of a provider is AWS, which can manage
resources of type aws_instance, aws_eip, aws_elb, etc.”

The ACSmI Provider Plugin can manage resources of type cloudbroker_instance, which are

Virtual Machines of the specific Cloud Provider indicated in the Application Description, and allows to
create, read, update, and delete them.

The main functionalities planned so far for the ACSmI provider plugin are the following.

F1. Request to ACSmI the creation of an infrastructure resource, given its type, the target Cloud
Provider, and various initialization parameters read from the Application Description

F2. Request to ACSmI to read the information available about a given existing infrastructure resource
F3. Request to ACSmI to update the configuration of a given existing infrastructure resource
F4. Request to ACSmI to delete / release a given existing infrastructure resource

The Preparation scripts cannot be identified with a specific ADAPT architectural component; they are
part of the deployment scripts needed for the automation of resource provisioning indicated in
requirement WP4-REQ12. The main functionalities of the Preparation scripts are the following

F5. Generate credentials to access the Virtual Machines (VMs)
F6. Install and configure the container runtime (Docker) on those VMs

2 https://www.terraform.io/docs/plugins/provider.html

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 17

www.decide-h2020.eu

F7. Install and configure the support for VMs’ and services’ health checks (Consul)

The listed functionalities are implemented using an incremental approach over multiple releases, also
depending on the functionalities available in the ACSmI API. In this first release the following
functionalities are implemented: F1, F2, F4, F5, F6, F7.

The following Table 1 details the relationship between requirements indicated in deliverable D4.1 and
the implemented functionalities, with a description of the coverage for each functionality.

Table 1. Mapping between requirements and functionalities, with detailed coverage

Functionality Req. ID Coverage
F1 WP4-REQ313 The prototype ACSmI Provider Plugin supports requesting

to ACSmI the creation of VM resources from any of the
supported Cloud Providers (currently AWS and
CloudSigma). Parameters for the request are read from the
Application Description.

F2 WP4-REQ31 The prototype reads the IP address assigned to the created
VM.

F3 WP4-REQ31 None.

F4 WP4-REQ31 The prototype supports requesting to ACSmI the release of
a VM resource given its ID.

F5 WP4-REQ124, WP4-REQ31 The prototype generates certificates and access keys for
each created Virtual Machine

F6 WP4-REQ12, WP4-REQ31,
WP4-REQ365

The prototype installs and configures Docker on each
created Virtual Machine, also setting up the credentials
needed to access the image repository

F7 WP4-REQ12, WP4-REQ31 The prototype installs Consul and configures it to join a
WAN cluster, where ADAPT is the master node

2.1 Fitting into overall DECIDE ADAPT Architecture

The ADAPT Deployment Orchestrator, as already indicated in deliverable D4.4 [1], is part of the ADAPT
architecture as shown in Figure 1. The “iObtainRelease resources” interface exported from ACSmI and
used by the Deployment Orchestrator is exactly the API invoked through the ACSmI Provider Plugin to
create or delete Virtual Machines from a specific Cloud Provider.

3 WP4-REQ31: Helper modules implement the logics for the deployment steps, the retrieval of the monitoring
actions, the actions for adapting applications and implementing the actions required for interfacing different
cloud platforms.
4 WP4-REQ12: DECIDE [..] will provide [..] automation of the provisioning resources and deployment scripts for
multi-cloud native applications
5 WP4-REQ36: ADAPT will support modular applications where each composition unit is a containerized service

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 17

www.decide-h2020.eu

Figure 1. Deployment Orchestrator component in the ADAPT architecture

The ACSmI Provider Plugin is shown in ¡Error! No se encuentra el origen de la referencia. Figure 2 as
part of the ADAPT Deployment Orchestrator component.

Figure 2. The ACSmI Provider Plugin in the Deployment Orchestrator architecture

The Preparation scripts are part of the ADAPT Deployment Orchestrator package, and are used by the
Preparation Engine and by the Execution Engine when creating and applying the deployment actions
respectively.

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 17

www.decide-h2020.eu

3 Technical description

This section describes the technical details of the implemented software.

3.1 The Terraform ACSmI provider plugin

ADAPT Deployment Orchestrator uses the Terraform tool to apply provisioning and deployment
actions. This mechanism is widely documented in deliverable D4.4 [1] and will therefore not be
described here.

The Terraform interaction with external systems (cloud environments, configuration management
tools, databases, etc.) is based on a plugin mechanism. Terraform provides libraries and schemas for
defining interfaces, data structures, configuration keys and callbacks, which allow to abstract many of
the complexities and ensure consistency between providers. With such libraries at hand, a developer
can extend the Terraform capabilities by implementing new plugins for connecting to private clouds
and for managing custom tools and resources.

In DECIDE, we rely on the ACSmI component as the central manager for the selection of cloud
resources. The ACSmI component acts as a cloud broker, and the provisioning of cloud resources is
mediated by a REST API which is then the single access point to the clouds.

To allow the ADAPT Deployment Orchestrator to interact via Terraform with such API, we developed
a custom Terraform plugin, extending the Terraform functionalities with new capabilities.

The implementation follows the directions specified by the dedicated section of the Terraform
documentation6, which we briefly summarize in the following.

Terraform and the related plugins are implemented in the Go Language7, a modern, compiled
programming language optimized for modern multicore and networked machines. Pre-requisite for
developing a Terraform plugin is to install the Go Language programming environment8. In order to
compile, the Terraform source code is also needed locally. It is available for download from the
Terraform Github public area9.

A Terraform plugin must import the Terraform schemas and core libraries (cf. snippet code below) and
implement a set of interfaces for providing access to resources and for their manipulation.

package main

import (

 "github.com/hashicorp/terraform/helper/schema"

 "github.com/hashicorp/terraform/plugin"

 "github.com/hashicorp/terraform/terraform"

[..]

)

Our implementation provides a mapping between Terraform and the ACSmI component for the
creation, manipulation and deletion of a virtual machine on a cloud provider.

The plugin implements first the definition of the data structures specific to the ACSmI virtual machines,
extending the Terraform schemas with plugin-specific resource definitions. The interfaces for virtual

6 https://www.terraform.io/guides/writing-custom-terraform-providers.html
7 https://golang.org/
8 https://golang.org/doc/install
9 https://github.com/hashicorp/terraform

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 17

www.decide-h2020.eu

machine management are then implemented by mapping the Terraform operations and the equivalent
REST calls required on the ACSmI API. The operations consist of:

• Creation of a virtual machine, based on parameters defining the size, OS image,
architecture, opened ports, etc. in the format understood by the ACSmI API.

• Reading of the virtual machine properties at runtime, such as the id or the IP addresses
assigned by the provider after creation.

• Deletion of the virtual machine.

The implemented code must be provided into a ‘main.go’ file, or in files imported by a main.go file,
which acts as the entry point for the plugin execution. The code is then compiled via the Go ‘build’
tool, which generates as output a binary file.

To adhere to the Terraform plugin specification, the plugin binary file must be named after the
following convention:

terraform-provider-‘name’

Since the ACSmI functionality which we are using in this case is that of a cloud broker, the plugin binary
has been named ‘cloudbroker’ and it is built as:

terraform-provider-cloudbroker

This binary file must then be made available to the Terraform installation of any ADAPT Deployment
Orchestrator. As specified in deliverable D4.4 [1], the ADAPT Deployment Orchestrator is packaged
into a Docker image. For this reason, the plugin binary is copied in the PATH of the Terraform binaries
at image creation, as defined in the corresponding Dockerfile:

FROM tiangolo/uwsgi-nginx-flask:python3.6

RUN apt-get update && apt-get install unzip && wget https://releases.hashic

orp.com/terraform/0.10.7/terraform_0.10.7_linux_amd64.zip?_ga=2.121414664.1

02068769.1507033863-2054770415.1501495729 -O temp.zip && unzip temp.zip -d

/usr/local/bin && rm temp.zip && mkdir -p /app/repo && mkdir -p /home/ubunt

u/terraform/certs && mkdir -p /home/ubuntu/terraform/scripts && mkdir /home

/ubuntu/terraform/keypairs && pip install flask-restplus

COPY app/ /app/

COPY tfplugin/terraform-provider-cloudbroker /usr/local/bin

COPY scripts /home/ubuntu/terraform/scripts

ENV STATIC_INDEX 1

The Dockerfile above shows the steps for the creation of the ADAPT Deployment Orchestrator image.
Starting from a pre-packaged image providing the flask framework deployed on a nginx http engine, a

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 17

www.decide-h2020.eu

set of installation steps are performed to update the package libraries and to install Terraform and
other tools on the system.

After that, with the ‘COPY’ instructions, a set of files and folders are copied into the image. The
highlighted line (in bold and in a bigger font) shows the copy of the terraform plugin binary into the
‘/usr/local/bin’ folder of the image, which is in the execution PATH of the system. Terraform can
then find the plugin when a resource configuration specifies it as provider.

The diagram in Figure shows the relationship between Terraform, the ACSmI plugin and ACSmI itself.
The Terraform ACSmI plugin implements the interfaces defined by the schemas provided by the
Terraform core distribution. If the plugin is available in the execution path of the Terraform core
binaries, the Terraform commands (init, plan, apply) can manage resources configured for using the
“cloudbroker” provider implemented by the ACSmI plugin.

The ‘init’ command is responsible for verifying first that the plugin exists and is available. If the check
successful, the ‘plan’ and ‘apply’ commands can be executed.

Figure 3.- Relationship between Terraform logical components and the plugin

A sample resource configuration involving the plugin is shown in the following excerpt, taken from

deliverable D4.4 [1]:

provider "cloudbroker" {

 username = "${var.cloudbroker_username}"

 password = "${var.cloudbroker_password}"

 endpoint = "${var.cloudbroker_endpoint}"

 timeout = 60

 max_retries = 5

}

resource "cloudbroker_instance" "my-virtual-machine" {

 software_id = "${var.vm_software_id}"

 resource_id = "${var.vm_resource_id}"

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 17

www.decide-h2020.eu

 region_id = "${var.vm_region_id}"

 instance_type_id = "${var.instance_type_id}"

 isolated = "false"

 key_pair_id = "${var.key_pair_id}"

 disable_autostop = "true"

 opened_port = "${var.opened_port}"

 name = "${var.node_name}"

}

The configuration defines a ‘cloudbroker’ provider; Terraform init, while parsing the configuration file,
checks for the existence of a ‘terraform-provider-cloudbroker’ in the execution path.

When running the Terraform ‘plan’ or ‘apply’ command, Terraform uses the plugin to create a
‘cloudbroker_instance’ resource, using the methods of the plugin which implement the ‘create’
functionality. This triggers a REST call toward the ACSmI which POSTs a request for the creation of a
new virtual machine, with the specified parameters.

When running a Terraform ‘destroy’ command, the corresponding ‘delete’ method of the plugin is
invoked, which in turn triggers the REST call toward the provider for stopping and removing the virtual
machine.

3.2 The Preparation scripts

The Preparation scripts are a collection of utilities that are needed to prepare the runtime environment
for the multi-cloud application components. They comprise both the installation of tools required to
run specific commands and the configuration steps enabling access to resources.

In the DECIDE scenario, we are targeting multi-cloud applications obtained by composition of services
provided by components packaged into containers. In particular, we are adopting Docker
containerization as the base technology for the applications. Therefore, the virtual machines which
define the application infrastructure are based on Linux (the reference environment for Docker) and
the scripts are text files written in a scripting language that can be executed by the Linux command
line interpreter.

The preparation scripts are handled in two phases by the ADAPT Deployment Orchestrator:

• During the dynamic generation of the Terraform configuration files related to the creation of
the virtual machines, by the ADAPT Deployment Orchestrator Preparation Engine;

• During the provisioning of the virtual machines, by the ADAPT Deployment Orchestrator
Execution Engine.

In the first case, the Preparation Engine includes references to such script files into the templates
defining the virtual machine resources, more specifically into the ‘file’, ‘local-exec’ and ‘remote-exec’
provisioners sections.

In the second case, The Execution Engine runs the scripts according to the configurations defined in
the provisioners sections (cf. deliverable D4.4, section “ADAPT Deployment Orchestrator Execution
Engine” for details [1]). A ‘file provisioner’ takes care of copying the scripts from the ADAPT
Deployment Orchestrator to the virtual machine. A ‘remote-exec’ provisioner executes the scripts
remotely, after connecting to the virtual machine via SSH. A ‘local-exec’ provisioner copies back from
the virtual machine to the ADAPT Deployment Orchestrator a set of files generated during the remote
script execution, typically certificates that are required to connect remotely to the Docker daemon
socket.

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 17

www.decide-h2020.eu

More specifically, the scripts executed on the virtual machines perform the following actions:

• Generate self-signed certificates and access keys on the virtual machine, based on the public
IP assigned by the cloud provider.

• Install Docker on the virtual machine and start it as a daemon, configuring it to be accessible
remotely via the certificates created at the previous step.

• Configure Docker to start as a daemon and restart it.

• Install Consul to allow basic health check on the virtual machines and services.

• Make the virtual machine join a Consul WAN cluster, where ADAPT is the master node.

• Configure the virtual machine with proper filepath and certificate to access a private Docker
registry, required in case the application needs to pull Docker images from a private repository.

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 17

www.decide-h2020.eu

4 Conclusions

This deliverable reports about the Helpers, which are modules tightly linked with the main DECIDE
ADAPT components. In Y1 two Helpers have been developed: the Terraform Plugin to interface with
ACSmI component and the set of Preparation scripts enabling the setup of the runtime environment
for the multi-cloud application components.

In the next year further Helpers will be developed, such as monitoring probes to collect application-
specific metrics and the optional reverse-proxy component to maintain microservices communication
even in case of migration.

http://www.decide-h2020.eu/

D4.10 – Initial multi-cloud application helpers Version 1.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 17

www.decide-h2020.eu

References

[1] DECIDE Consortium, “D4.4. Initial multi-cloud application deployment and adaptation,” 2017.

[2] DECIDE Consortium, “D4.7 Initial multi-cloud application monitoring,” 2017.

[3] DECIDE Consortium, “D4.1 Initial DECIDE ADAPT Architecture,” 2017.

http://www.decide-h2020.eu/

	Table of Contents
	List of Figures
	List of Tables
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Suggested reading path
	1.3 Document structure

	2 Functional description
	2.1 Fitting into overall DECIDE ADAPT Architecture

	3 Technical description
	3.1 The Terraform ACSmI provider plugin
	3.2 The Preparation scripts

	4 Conclusions
	References

