
D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 77

www.decide-h2020.eu

Deliverable D4.1

Initial DECIDE ADAPT Architecture

Editor(s): Lorenzo Blasi

Responsible Partner: Hewlett Packard Italiana / HPE

Status-Version: Final – v2.0

Date: 28/11/2017

Distribution level (CO, PU): PU

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 77

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable: Initial DECIDE ADAPT Architecture

Due Date of Delivery to the EC: 30/11/2017

Workpackage responsible for the
Deliverable:

WP4 - Continuous deployment and operation

Editor(s): Hewlett Packard Italiana s.r.l. (HPE)

Contributor(s): ARSYS, EXPERIS, FhG, HPE, TECNALIA

Reviewer(s): AIMES, TECNALIA

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP5, WP6

Abstract: This deliverable describes the initial version of the
architecture of DECIDE ADAPT tool providing a
comprehensive overview of the system using different
architectural views to represent different aspect of the
system (e.g. Use Case View, Logical View, Process
View, Deployment View, and Implementation View).

Keyword List: Cloud-native, microservice, REST, stateless, container,
virtual machine and orchestration system

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 77

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 28/07/2017 Defined document ToC HPE

V0.2 01/08/2017 Agreed on responsibility for each
section

HPE

V0.3 22/08/2017 Contribution on Application
Description

FhG

V0.4 05/09/2017 Added Use Cases Diagram and
descriptions; updated ToC with
Experis contribution

HPE

V0.5 06/09/2017 Include merged version of Application
Description and MCSLA

HPE

V0.6 07/09/2017 Added content for section on
Improving business continuity

HPE

V0.7 08/09/2017 Integrated first Tecnalia contribution TECNALIA, HPE

V0.8 08/09/2017 Modifications during WP4 call HPE

V0.9 12/09/2017 Added sections for requirements
analysis and requirements mapping;
added UCUI03 to the UC diagram;
added text for use cases UCUI01 and
UCOPTIMUS01.

HPE

V0.10 18/09/2017 Syncronized Application Description
fields with Architect; added logical
architecture diagram and description

HPE

V0.11 21/09/2017 Integration of Tecnalia and Experis
contributions

HPE, TECNALIA, Experis

V0.12 26/09/2017 Added: Use Cases UCDO06 and
UCDO07, deployment components
architecture, Terraform and other
implementation technologies

HPE

V0.13 28/09/2017 Added content for section 7 on ADAPT
deployment alternatives; integrated
ARSYS contribution

HPE

V0.14 29/09/2017 Integration of ARSYS Glossary
contribution; updated section 3.3 for
new Use Cases; updated application
description; integrated Experis update

HPE, ARSYS, Experis

V0.15 02/10/2017 Added Executive Summary; added
Introduction and Conclusion

HPE, Experis

V0.16 9/10/2017 Add further TECNALIA contribution,
removed partners’ names from titles

HPE, TECNALIA

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 77

www.decide-h2020.eu

Version Date
Modifications Introduced

Modification Reason Modified by

V0.17 16/10/2017 Updated after reviewer's comments :
also moved the Application
Description definition to the Appendix

HPE

V0.18 18/10/2017 Added interface iObtainRelease
resources in section 5.3

TECNALIA

V0.19 19/10/2017 Changed ADAPT architecture figure in
section 4

HPE

V0.20 20/10/17 Comments updated during conference
call

HPE

V0.21 23/10/17 Removed handled/obsolete
comments

HPE

V0.22 24/10/17 Updated App Description: removed
unused fields, renamed some fields
using camelCase notation, added Used
By column, added other fields needed
by ADAPT Deployment

HPE

V0.23 25/10/17 Integrated updates from TECNALIA;
obsolete comments removed; minor
text and formatting changes

HPE, TECNALIA

V0.24 25/10/17 Updated component diagrams for
consistency

HPE

V0.25 31/10/17 Integrated ARSYS contribution on
section 2.4.2.3; small fixes to text;
updated monitoring component
diagrams; added missing interfaces

ARSYS, HPE, TECNALIA,
EXPERIS

V0.26 10/11/17 Updated ADAPT deployment
components

HPE

V0.27 13/11/17 Updated Helpers’ role in ADAPT logical
architecture; final editing

HPE

V1.0 13/11/17 Version ready for release HPE

V1.1 21/11/17 Updated according to TECNALIA
review comments

HPE

V2.0 22/11/2017 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 77

www.decide-h2020.eu

Table of Contents

Table of Contents .. 5

List of Figures ... 6

List of Tables .. 7

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction ... 11

1.1 About this deliverable ... 11

1.2 Document structure .. 11

2 Initial ADAPT requirements ... 12

2.1 Requirements collected from Partners ... 12

2.2 DevOps Requirements ... 18

2.3 Requirement Analysis .. 18

2.4 From Cloud to Multi-cloud applications .. 20

2.4.1 What is a Cloud Native Application ... 20

2.4.2 Microservices Architecture ... 21

2.4.2.1 Stateful vs Stateless Applications .. 22

2.4.2.2 Advantages of Multi-cloud Applications ... 23

2.4.2.3 Disadvantages of Multi-cloud Applications ... 24

2.4.3 Containers Technology .. 24

2.4.4 Deployment Issues .. 26

3 High Level ADAPT Functionalities .. 28

3.1 ADAPT in the overall DECIDE flow ... 28

3.2 ADAPT Use Cases ... 29

3.2.1 ADAPT Deployment Orchestrator ... 30

3.2.2 ADAPT Monitoring Manager ... 32

3.2.3 ADAPT Violations Handler ... 33

3.2.4 ADAPT UI ... 34

3.2.5 ADAPT Service Registry and Proxy .. 34

3.2.6 External DECIDE components .. 35

3.3 Requirements mapping ... 35

3.3.1 Deployment requirements mapping ... 36

3.3.2 Monitoring requirements mapping ... 38

3.3.3 Violations Handling requirements mapping .. 40

3.4 Improving business continuity .. 42

4 DECIDE ADAPT Architecture .. 44

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 77

www.decide-h2020.eu

4.1 Deployment components .. 45

4.2 Monitoring components.. 46

4.3 Violation Handlers ... 49

5 DECIDE ADAPT Interfaces .. 51

5.1 Application Description ... 51

5.2 Exported interfaces ... 51

5.3 Consumed interfaces ... 52

6 Candidate implementation technologies .. 54

6.1 Terraform .. 54

6.2 Consul .. 54

6.3 Traefik .. 55

6.4 Nagios .. 55

6.5 Telegraf, Influx DB, Grafana .. 56

6.6 Ganglia ... 59

7 ADAPT deployment alternatives ... 62

7.1 The basic idea: containerized microservices ... 62

7.2 One ADAPT for each application ... 62

7.3 ADAPT as a Service .. 62

8 Conclusions .. 64

References ... 65

APPENDIX: Application Description ... 66

List of Figures

FIGURE 1. FUNDAMENTALS OF A NATIVE CLOUD APPLICATION [3] ... 21
FIGURE 2. STATEFUL VS STATELESS SOFTWARE DESIGN [6] ... 23
FIGURE 3. TRADITIONAL VM VS CONTAINERS TECHNOLOGY [8] .. 26
FIGURE 4. DECIDE WORKFLOW ... 28
FIGURE 5. DECIDE ADAPT USE CASE DIAGRAM .. 30
FIGURE 6. DECIDE ADAPT LOGICAL ARCHITECTURE ... 44
FIGURE 7. ADAPT DEPLOYMENT ORCHESTRATOR COMPONENTS... 45
FIGURE 8. INITIAL MOCKUPS FOR THE ADAPT M UI .. 47
FIGURE 9. ADAPT MONITORING INTERNAL COMPONENT DIAGRAM ... 48
FIGURE 10. ADAPT MONITORING EXTERNAL COMPONENT DIAGRAM ... 48
FIGURE 11. ADAPT VIOLATION HANDLERS COMPONENT DIAGRAM .. 49
FIGURE 12. ADAPT VIOLATION HANDLER COMMUNICATIONS DIAGRAM .. 50
FIGURE 13. INTEREST OF THE DIFFERENT MONITORING TOOLS, NAGIOS, GRAFANA, TELEGRAF, INFLUXDB. 55
FIGURE 14. INTEREST OF THE DIFFERENT MONITORING TOOLS, NAGIOS, GANGLIA ... 56
FIGURE 15. NAGIOS MONITORING STACK COVERAGE ... 56
FIGURE 16. THE MONITORING STACK: TELEGRAF,IINFLUXDB AND GRAFANA. ... 57
FIGURE 17. GRAFANA GRAPHICAL INTERFACE. .. 58
FIGURE 18. TELEGRAF+INFLUXDB+GRAFANA MONITORING STACK COVERAGE. ... 58

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 77

www.decide-h2020.eu

FIGURE 19. GANGLIA ARCHITECTURE ... 59
FIGURE 20. A CLUSTER MONITORING USING GANGLIA ... 61
FIGURE 21. GANGLIA MONITORING STACK COVERAGE .. 61

List of Tables

TABLE 1. DECIDE ADAPT ACCEPTED REQUIREMENTS ... 12
TABLE 2. DEVOPS REQUIREMENTS APPLICABLE TO ADAPT ... 18
TABLE 3. HIGH LEVEL GENERAL REQUIREMENTS ... 18
TABLE 4. MICROSERVICES VS TRADITIONAL ARCHITECTURE ... 22
TABLE 5. DIFFERENCES BETWEEN VMS AND CONTAINERS ... 25
TABLE 6 . MAPPING BETWEEN DEPLOYMENT USE CASES AND REQUIREMENTS .. 36
TABLE 7. MAPPING BETWEEN MONITORING USE CASES AND REQUIREMENTS ... 39
TABLE 8. MAPPING BETWEEN VIOLATION HANDLING USE CASES AND REQUIREMENTS ... 40
TABLE 9. APPLICATION DESCRIPTION MODEL FOR DEPLOYMENT .. 66
TABLE 10. APPLICATION DESCRIPTION MODEL FOR MONITORING THE APPLICATION VIA ITS MCSLA (NESTED ELEMENTS

FOR “APP_MCSLA”) .. 72
TABLE 11. NESTED ELEMENTS FOR MICROSERVICE_SLAS .. 72
TABLE 12. NESTED ELEMENTS FOR MICROSERVICE_SLO AND MICROSERVICE_SQO .. 73
TABLE 13. NESTED ELEMENTS FOR VIOLATIONTRIGGERRULE ... 74
TABLE 14. NESTED ELEMENTS FOR REMEDY ... 74
TABLE 15. MCSLA METRIC DATA MODEL FOR MONITORING .. 75
TABLE 16. NESTED ELEMENTS FOR EXPRESSION .. 76
TABLE 17. NESTED ELEMENTS FOR PARAMETER .. 77
TABLE 18. NESTED ELEMENTS FOR RULE .. 77

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 77

www.decide-h2020.eu

Terms and abbreviations

API Application Programming Interface

CPU Central Processing Unit

CSP Cloud Service Provider

DevOps Development and Operations

DoW/DoA Description of Work/Action

EC European Commission

GB Giga Bytes

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

KR Key Result

MCSLA Multi-Cloud Service Level Agreement

NFR Non Functional Requirement

CNA Cloud Native Application

OS Operating System

Protobuf Protocol Buffers (Google’s data interchange format)

QA Quality Assurance

RAM Random-Access Memory

REST Representational State Transfer

SLA Service Level Agreement

SLO Service Level Objective

SQO Service Quality Objective

SSH Secure SHell

ToC Table of Contents

UC Use Case

UI User Interface

UML Unified Modeling Language

URI Unified Resource Identifier

URL Unified Resource Locator

UUID Universally Unique IDentifier

VM Virtual Machine

WP Work Package

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 77

www.decide-h2020.eu

Executive Summary

Multi-cloud applications are applications that can dynamically distribute their components over
heterogeneous cloud resources. The main objective of DECIDE project is to provide a novel software
framework to design, develop, and dynamically deploy multi-cloud applications. In this framework the
ADAPT tool aims to allow continuous deployment and dynamical self-adaptation for multi-cloud
applications and to support their re-deployment using the best combination of cloud services to satisfy
the required Non Functional Properties (NFP) and Service Level Agreement (SLA).

This deliverable is the first result of DECIDE Work Package 4 (“continuous deployment and operation”)
and reports the initial ADAPT architecture and design. The architecture of the overall DECIDE
framework can be found in the DECIDE deliverable D2.4.

This document starts with a detailed listing of requirements (sect. 2.1) collaboratively collected from
DECIDE Partners at the beginning of the project. The requirements are then analyzed and categorized
(sect. 2.3) by separating those applying to the whole DECIDE framework or describing the ADAPT tool
at a high level, from the requirements explicitely referring to specific functionalities .

To better understand ADAPT requirements, a section is also provided (sect. 2.4) to explain the main
concepts about the ADAPT target: native cloud applications possibly developed according to the micro-
services architecture and deployed on multiple clouds using containers technology.

Starting from the requirements, and in the context of the overall DECIDE workflow (sect. 3.1)
developed in Work Package 2, WP4 Partners identified and detailed the main functionalities of the
ADAPT tool (sect.3.2). To represent those functionalities and their relationships we used the UML use
case graphical syntax, followed by a textual description for each identified use case. For better
traceability, each use case has a unique identifier and is mapped to its related requirements (sect.3.3).
The main functionalities of ADAPT are: deploying the application, monitoring it and adapting this
application to any external or internal variability, typically by redeploying it.

Redeploying an application involves stopping and undeploying the current configuration and deploying
the new one. Adapting an application by redeploying it on every SLA violation may impact business
continuity. Techniques to avoid such an impact have been studied and are reported in the deliverable
(sect. 3.4). Some of the reported techniques apply to the application or to the way developers create
it (e.g. use a microservices architecture possibly composed of stateless services), and have been
therefore proposed as fundamental techniques for the whole DECIDE framework.

The three main functionalities of ADAPT, deployment, monitoring and adaptation, are reflected in the
three main components of its architecture: Deployment Orchestrator, Monitoring Manager, and
Violations Handler. This document reports the high level ADAPT architecture and details the
components and subcomponents that are planned to be developed in the whole project lifecycle (sect.
4), along with their respective interfaces (sect. 5).

Most of the information needed to perform the ADAPT functionalities are provided by an object which
is also central to the whole DECIDE workflow: the Application Description. Its definition has evolved
since the first data model shown in the DECIDE deliverable D2.1, and it is still evolving in parallel with
the design and implementation iterations. This deliverable reports the current definition of all
Application Description’s fields and their types (introduced in sect. 5.1 and listed in the Appendix)..

The implementation of the ADAPT components is not starting from scratch. In parallel with the
collection of requirements and the definition of the architecture, DECIDE Partners evaluated some new
open source technologies for deployment and monitoring, aiming at reusing them for a faster and less
effort-intensive development of the ADAPT tool. Some of the evaluated technologies, such as

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 77

www.decide-h2020.eu

Terraform and Nagios plus others, which can be considered good candidates as starting points for the
implementation, have been briefly described in this deliverable (sect. 6).

Another major topic to be analyzed beyond implementation is how to deploy the ADAPT tool. The
deployment decision results from both technical and business considerations: we will have to analyze
technical aspects to understand what is feasible and then weight the possible solutions from a business
standpoint. This analysis work is just started and will progress in the next year, in collaboration with
WP7 for business analysis. This deliverable reports the basic idea, which project Partners currently
agree on: implementing ADAPT as a containerized microservices application (sect. 7.1), and deploying
it either with one instance per application (sect. 7.2), or as a service (sect. 7.3). The deployment
alternatives have not been analyzed yet: this will be one of the major topics for next year’s work.

The next WP4 deliverables due by M12 will be D4.4, D4.7 and D4.10, respectively about deployment
and adaptation, monitoring, and helpers. These deliverables will report about the initial ADAPT
implementation according to the architecture designed in this deliverable. These deliverables will also
report about any update to the ADAPT tool design and to the Application Description definition,
following from the experience gained with the implementation.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 77

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This deliverable corresponds to Task 4.1, DECIDE ADAPT Architecture and Integration. It aims at
describing DECIDE ADAPT’s high-level architecture. The requirements elicited collaboratively amongst
partners are the starting point of this document. They are analyzed and refined to obtain the
functionalities that ADAPT must provide. These functionalities help break down ADAPT into
components, that are described in this document along with their interfaces, which will be
implemented in tasks 4.2, 4.3 and 4.4.

1.2 Document structure

The document starts listing the requirements that affect ADAPT (sect. 2), and analyzing whether those
requirements apply to the whole DECIDE framework or just to ADAPT itself. The last part of this section
is devoted to multi-cloud applications: what they are, what advantages they provide and what are the
main issues.

The next section deals with the high-level functionalities of DECIDE (sect. 3). It starts with the
description of ADAPT’s role within DECIDE and the use cases that affect this Key Result (KR). Then, the
requirements are mapped with the use cases, to allow requirements tracking down to functionalities
and their implementation.

The deliverable continues with the high-level description of ADAPT’s architecture (sect. 4). It identifies
the main components and analyzes their behavior and interactions.

The next section is devoted to ADAPT’s interfaces (sect. 5). It presents the Application Description,
which is the main source of information for ADAPT, and describes the interfaces used for monitoring
and those that will be consumed by this KR.

Lastly, the document analyzes candidate technologies that can be used for ADAPT or some of its

functionalities (sect. 6) and explores different deployment possibilities for this tool (sect. 7).

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 77

www.decide-h2020.eu

2 Initial ADAPT requirements

2.1 Requirements collected from Partners

Requirements for the ADAPT tool have been collected and discussed as a collaborative work among DECIDE WP4 Partners. An online live document [1] has
been used to collect requirements and to classify and analyse them.

In Table 1 below all the Accepted requirements have been reported.

Table 1. DECIDE ADAPT Accepted requirements

Req. ID Description Reference Comment

WP4-REQ1 DECIDE ADAPT will support the self-adaptation and dynamic re-
deployment of (parts of) multi-cloud applications when certain
conditions are not met.

DoA sect. 1, p.
7

High level description of DECIDE ADAPT

WP4-REQ2 [Conditions not met] include for instance, that the defined
composite multi-cloud application SLA is not being fulfilled, the
application is not performing as established or the cloud service
providers (CSPs) are violating the contracted SLAs.

DoA sect. 1, p.
7

List of possible adaptation triggers

WP4-REQ3 DECIDE ADAPT will pro-actively adjust the running configuration of
the application

DoA sect. 1.1,
p. 9;
DoA sect.
1.3.2.1, p. 13

Adjusting the application configuration is one
possible adaptation action, not the only one.
Doing that proactively means that ADAPT will
trigger the workflow for application
reconfiguration

WP4-REQ4 {Adjustment will be} based on measurements that are derived from
the dynamic monitoring activities of both the application and the
non-functional properties of the CSPs and cloud offerings where the
application is deployed and making use of.

DoA sect. 1.1,
p. 9;
DoA sect.
1.3.2.1, p. 13

List of possible adaptation triggers leading to
application configuration adaptation [see also
REQ2]

WP4-REQ5 KPI 5.1: Degree of correctness of the re-deployment configuration
compared with NFR and other requirements (at least 90% of NFR).

DoA sect. 1.1,
p. 9

KPI shared with OPTIMUS, since it generates the
deployment configuration

WP4-REQ6 KPI 5.2: 70% of the functionalities will be validated overall in the
DECIDE use cases

DoA sect. 1.1,
p. 9

[collaboration: WP6]

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 77

www.decide-h2020.eu

Req. ID Description Reference Comment

WP4-REQ7 DECIDE will address the enhancement in the development
productivity and time-to-market of 1) applications which require
high rates of performance and reliability (i.e.: network management
and online gaming) and 2) applications in which the legal compliance
of the CSP where the application is deployed as well as the legal
compliance of the used cloud services and resources is critical due to
the type of data managed (i.e.: sensitive data in eHealth).

DoA sect. 1.1,
p. 9

This is a requirement more at the project level

WP4-REQ8 DECIDE ADAPT [KR5], allows operators to focus on the development
of innovative features of the multi-cloud application, as it provides
the mechanisms, algorithms and tools to let the application self-
adapt itself and deploy (semi-) automatically the application or parts
of the application

DoA sect. 1.2,
p. 10

To be highlighted: "tools to let the application self-
adapt itself", whereas REQ3 says "will pro-actively
adjust"

WP4-REQ9 DECIDE ADAPT [KR5], the application self-adaptation tool will
support automated dynamic deployment of service components as
well as the runtime monitoring of functional and non-functional
service properties.

DoA sect. 1.2,
p. 10

High level description of DECIDE ADAPT, see REQ1

WP4-REQ10 DECIDE ADAPT [KR5] will be able to change the configuration and
topology of services at operational time based on continuous
monitoring of both the conditions of the application and the CSPs
where the application is deployed on.

DoA sect. 1.2,
p. 11

see also REQ8

WP4-REQ11 A multi-cloud application is a distributed application over
heterogeneous cloud resources whose components are deployed on
different CSPs and still, they all work in an integrated way and
transparently for the end-user.

DoA sect.
1.3.2.1, p. 12

Definition of multi-cloud application

WP4-REQ12 DECIDE OPTIMUS [..] will provide [..] automation of the provisioning
resources and deployment scripts for multi-cloud native applications

DoA sect.
1.3.2.1, p. 13

After further analysis, the Partners agreed that
ADAPT will generate the deployment scripts and
that resource provisioning, will be performed
through ACSmI; see section 4.1

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 77

www.decide-h2020.eu

Req. ID Description Reference Comment

WP4-REQ15 Each deployment configuration will be stored in the multi-cloud
native application controller, maintaining the current deployment
configuration situation as well as the historic of the previous
deployment configuration used, so that they can be checked in the
re-deployment phase

DoA sect.
1.3.2.1, p. 14

Application controller (output of T3.4) will keep a
history of deployment configurations
[collaboration: WP3]

WP4-REQ17 The following CSPs and corresponding technologies will be
integrated in DECIDE: ARSYS (VMWare), AIMES (modified
OpenStack), TECNALIA (OpenStack and OpenShift), Amazon as well
as other European Cloud Service providers.

DoA sect.
1.3.2.1, p. 14

Lists which are the CSPs to be supported [multi WP
requirement]

WP4-REQ18 During the application operation phase, the DECIDE self-adaptation
application provisioning tool (ADAPT [KR5]) will continuously
monitor and assess the fulfillment of the established NFR and
MCSLA

DoA sect.
1.3.2.1, p. 15

Continuous monitoring of NFR and MCSLA

WP4-REQ19 If a violation of any of the [former: NFR and MCSLA] metrics occurs,
the self-adaptation tool through the ACSmI will assess the operation
of the (combination of) cloud services selected and discard those
that are affecting the MCSLA

DoA sect.
1.3.2.1, p. 15

In case of a violation, ACSmI will indicate which the
responsible cloud services are. [collaboration:
WP5]

WP4-REQ20 The level of technological risk (Low or High) must be defined for the
application

DoA sect.
1.3.2.1, p. 15

We expect the level of technological risk to be
defined in the Application Description
[Requirement for WP3]

WP4-REQ21 If the application configuration has been established as of low
technological risk, the multi-cloud application will be self-adaptive
and it will be redeployed automatically, following a new deployment
configuration.

DoA sect.
1.3.2.1, p. 15

No need to get operator permission for
redeployment in case of low technological risk
application

WP4-REQ22 In case the application has been identified as high technological risk,
once it has identified the aspects that are affecting the
malfunctioning of the application, it will alert the operator and using
the OPTIMUS tool it will look for new (combination of) cloud services
to set up a new deployment schema

DoA sect.
1.3.2.1, p. 15

ADAPT must be able to alert the operator through
some UI;
ADAPT will get new deployment schema from
OPTIMUS [collaboration: WP3]

WP4-REQ23 [DECIDE ADAPT] will support the selection of the new deployment
scripts (based on the architectural patterns for deployment), and
thus semi-automatically re-deploy it [the application].

DoA sect.
1.3.2.1, p. 15

This is still the case of high technological risk
application, where the operator should select and
confirm redeployment

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 77

www.decide-h2020.eu

Req. ID Description Reference Comment

WP4-REQ25 DECIDE will also support multiple cloud layers DoA sect.
1.3.2.1, p. 15

Both IaaS and PaaS (specifically OpenShift and
containerized apps) will be supported

WP4-REQ27 DECIDE ADAPT [KR5] will provide the operator a report with the
NFPs that are not being fulfilled and an input file to be able to
simulate a new deployment topology through DECIDE OPTIMUS

DoA sect.
2.1.1, p.29

ADAPT will provide a report about violations to the
operator and to OPTIMUS [two different formats]

WP4-REQ28 DECIDE ADAPT is a framework providing a deployment orchestrator
(workflow manager for orchestrating the actions required for
deploying the multi-cloud application)

DoA part A:
Work package
descriptions
Objectives/T4.
2

Deployment Orchestrator is a main ADAPT
component which will orchestrate multi-cloud
application deployment

WP4-REQ29 DECIDE ADAPT is a framework providing a monitoring engine to
monitor if the working conditions meet the NFR and to trigger
alarms (high technological risks) or actions (low technological risks)

DoA part A:
Work package
descriptions
Objectives/T4.
3

Monitoring Engine is a main ADAPT component
which will monitor multi-cloud applications and
will activate remediation actions in case of
violation

WP4-REQ30 DECIDE ADAPT is a framework providing an adaptation workflow
manager (establishes the workflow and performs the adaptations
actions)

DoA part A:
Work package
descriptions
Objectives/T4.
2

WP4-REQ31 Helper modules implement the logics for the deployment steps, the
retrieval of the monitoring actions, the actions for adapting
applications and implementing the actions required for interfacing
different cloud platforms

DoA part A:
Work package
descriptions
Objectives/
T4.3

Helpers are reported in deliverable D4.10

WP4-REQ32 Helpers are specific for application and /or for architectural pattern DoA part A:
Work package
descriptions
Objectives

Helpers are reported in deliverable D4.10

WP4-REQ33 Helpers will be used/developed for the use cases DoA part A:
Work package
descriptions

Helpers are reported in deliverable D4.10

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 77

www.decide-h2020.eu

Req. ID Description Reference Comment

Objectives/
T4.3

WP4-REQ34 The actual deployment, monitoring and adaptation of an application
is obtained "feeding" DECIDE ADAPT with a description of the
application containing the related helpers

DoA part A:
Work package
descriptions
Objectives

The Application Description document is the basis
of all ADAPT functionalities

WP4-REQ35 ADAPT will support applications based on composition of stateless
(possibly micro) services

Tech
assessment

For technical feasibility of multi-cloud deployment.
We focus on new or refactored applications
[Affects use cases]. Actually, also stateful
microservices should be supported

WP4-REQ36 ADAPT will support modular applications where each composition
unit is a containerized service

Tech
assessment

For technical feasibility of multi-cloud deployment
ADAPT will not target the containerization of apps,
its input is expected to contain a set of
containerized modules each one providing one (or
a category of) service(s)

WP4-REQ37 DECIDE ADAPT [KR5], relying on the formal description of the multi-
cloud application, orchestrates the deployment, monitors the
working conditions and performs adaptations actions

DoA part A:
Work package
descriptions
Objectives

ADAPT relies on the formal description of the
application [collaboration: WP2/WP3]

WP4-REQ41 DECIDE ADAPT [KR5] can also be easily extended with the inclusion
of more NFPs that need to be measured, as well to different types of
applications such as those following the mobile cloud paradigm or
IoT

DoA sect.
2.1.2, p.30

This requirement is cross WP, requiring definition
at architectural level in WP2

WP4-REQ42 Applications are natively multi-cloud; as such, they can take
advantage of the different cloud service offers - even in the
activation of a single application - because they can be actually
distributed on different cloud providers

DoA sect.
2.1.4, p.32

ADAPT targets native Multi-cloud applications,
which can be distributed over different CSPs; see
also WP4-REQ11 and WP4-REQ35

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 77

www.decide-h2020.eu

Req. ID Description Reference Comment

WP4-REQ43 If the application configurations are classified with high
technological risk, [re-adaptation involves] simulating again the
deployment with DECIDE OPTIMUS but in a more driven and
accurate way, entering now as input, the identified problems so that
the new configuration can provide a solution to that problem.

DoA sect.
2.1.5, p.33

ADAPT will provide to OPTIMUS information on the
identified violation; see also WP4-REQ27

WP4-REQ44 Users will perceive relevant improvements in the business continuity
since as soon as there is a problem (i.e. lack of resource due to a
peak of requests) the software is automatically re-adapted and re-
deployed

DoA sect.
2.1.5, p.33

Benefit to applications' users; expectation is to
improve business continuity, therefore during
adaptation applications’ downtime should be
minimized

WP4-REQ45 [DECIDE ADAPT is] a tool that allows the (semi-)automatic
adaptation of the application and re-deployment in another multi-
cloud configuration when certain conditions are not met. These
conditions are on one hand the violations of the application’s own
multi-cloud SLA (MCSLA) and on the other hand, the non-fulfilment
of the NFP of the CSPs where the application is deployed as well as
the non-fulfilment of the NFP of the services provided by the ACSmI
that the application is using. These conditions will trigger an alert
and will cause the OPTIMUS tool to be launched again in order to
search for another deployment configuration. Depending on the
technological complexity requirement, and the initially prioritized
requirements by the user, the application will be re-adapted
automatically or an alert to the operator will be launched along with
a diagnosis of what malfunctioned so that a new optimal
configuration can be found.

DoA sect.
2.2.5.5, p.41

High-level description of DECIDE ADAPT.
Clear list of adaptation triggering conditions
(violation of application's MCSLA, non-fulfillment
of NFP of CSPs and of services provided by ACSmI
to the application).

Prioritization of SLAs is a REQ for WP3

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 18 of 77

www.decide-h2020.eu

2.2 DevOps Requirements

This section reports some requirements deriving from DevOps principles which have been collected by
WP2. The Table 2 lists the DevOps requirements from DECIDE Deliverable D2.1 [2] that apply to ADAPT.

Table 2. DevOps Requirements applicable to ADAPT

Req. ID Description Source

DEVOPS-REQF3 DECIDE framework must be able to monitor the
deployed micro-services

DevOps Principles #7

DEVOPS-REQF6 DECIDE framework must support the continuous
deployment of the developed apps

DevOps Principles #5

DEVOPS-REQF9 DECIDE framework must be able to track the issues
that affect the deployed services and use registries
to store this information

DevOps Principles #7

DEVOPS-REQF15 DECIDE must support the monitoring of the multi-
cloud application SLA and the SLAs of the
underlying cloud resources

Extended DevOps #3

DEVOPS-REQF16 DECIDE must support the semi-automatic
adaptation and redeployment of the application
into new cloud services when needed based on the
assessment of the continuous monitoring

Extended DevOps #3

DEVOPS-REQF17 DECIDE must support the monitoring of the SLAs of
the underlying cloud resources

Extended DevOps #3

2.3 Requirement Analysis

The collected DECIDE ADAPT requirements have been collaboratively analysed during several
conference calls by WP4 Partners and also autonomously by Partners in charge of specific components.

As a first classification, the higher level requirements have been identified. Some of them are general
DECIDE requirements, which can be applied to the whole DECIDE framework. Other are useful high
level descriptions of the DECIDE ADAPT component. This section reports, in the following Table 3, the
requirements from the previous sections which have been identified as high level and their
classification according to the two categories “General ADAPT requirement” and “ADAPT description”.
The requirements’ description is the same as that reported in the previous sections and has been
repeated here for reading convenience.

A further detailed analysis has been performed to map lower level requirements with the identified
use cases. The result of this work is reported in section 3.3.

Table 3. High level general requirements

Req. ID Description General
DECIDE
req.

ADAPT
description

WP4-REQ1 DECIDE ADAPT will support the self-adaptation and
dynamic re-deployment of (parts of) multi-cloud
applications when certain conditions are not met.

X

WP4-REQ2 [Conditions not met] include for instance, that the defined
composite multi-cloud application SLA is not being fulfilled,
the application is not performing as established or the

X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 19 of 77

www.decide-h2020.eu

Req. ID Description General
DECIDE
req.

ADAPT
description

cloud service providers (CSPs) are violating the contracted
SLAs.

WP4-REQ7 DECIDE will address the enhancement in the development
productivity and time-to-market of 1) applications which
require high rates of performance and reliability (i.e.:
network management and online gaming) and 2)
applications in which the legal compliance of the CSP
where the application is deployed as well as the legal
compliance of the used cloud services and resources is
critical due to the type of data managed (i.e.: sensitive data
in eHealth).

X

WP4-REQ8 DECIDE ADAPT [KR5], allows operators to focus on the
development of innovative features of the multi-cloud
application, as it provides the mechanisms, algorithms and
tools to let the application self-adapt itself and deploy
(semi-) automatically the application or parts of the
application

X

WP4-REQ9 DECIDE ADAPT [KR5], the application self-adaptation tool
will support automated dynamic deployment of service
components as well as the runtime monitoring of
functional and non-functional service properties.

X

WP4-
REQ10

DECIDE ADAPT [KR5] will be able to change the
configuration and topology of services at operational time
based on continuous monitoring of both the conditions of
the application and the CSPs where the application is
deployed on.

X

WP4-
REQ11

A multi-cloud application is a distributed application over
heterogeneous cloud resources whose components are
deployed on different CSPs and still, they all work in an
integrated way and transparently for the end-user.

X

WP4-
REQ12

DECIDE OPTIMUS [..] will provide [..] automation of the
provisioning resources and deployment scripts for multi-
cloud native applications

X

WP4-
REQ17

The following CSPs and corresponding technologies will be
integrated in DECIDE: ARSYS (VMWare), AIMES (modified
OpenStack), TECNALIA (OpenStack and OpenShift), Amazon
as well as other European Cloud Service providers.

X

WP4-
REQ25

DECIDE will also support multiple cloud layers X

WP4-
REQ35

ADAPT will support applications based on composition of
stateless (possibly micro) services

X

WP4-
REQ36

ADAPT will support composable applications where each
composition unit is a containerized service

X

WP4-
REQ37

DECIDE ADAPT [KR5], relying on the formal description of
the multi-cloud application, orchestrates
the deployment, monitors the working conditions and
performs adaptations actions

X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 20 of 77

www.decide-h2020.eu

Req. ID Description General
DECIDE
req.

ADAPT
description

WP4-
REQ41

DECIDE ADAPT [KR5] can also be easily extended with the
inclusion of more NFPs that need to be measured, as well
to different types of applications such as those following
the mobile cloud paradigm or IoT

X

WP4-
REQ42

Applications are natively multi-cloud; as such, they can take
advantage of the different cloud service offers - even in the
activation of a single application - because they can be
actually distributed on different cloud providers

X

WP4-
REQ44

Users will perceive relevant improvements in the business
continuity since as soon as there is a problem (i.e. lack of
resource due to a peak of requests) the software is
automatically re-adapted and re-deployed

X

WP4-
REQ45

[DECIDE ADAPT is] a tool that allows the (semi-) automatic
adaptation of the application and re-deployment in
another multi-cloud configuration when certain conditions
are not met. These conditions are on one hand the
violations of the application’s own multi-cloud SLA (MCSLA)
and on the other hand, the non-fulfilment of the NFP of the
CSPs where the application is deployed as well as the non-
fulfilment of the NFP of the services provided by the ACSmI
that the application is using. These conditions will trigger
an alert and will cause the OPTIMUS tool to be launched
again in order to search for another deployment
configuration. Depending on the technological complexity
requirement, and the initially prioritized requirements by
the user, the application will be re-adapted automatically
or an alert to the operator will be launched along with a
diagnosis of what malfunctioned so that a new optimal
configuration can be found.

X

2.4 From Cloud to Multi-cloud applications

To better understand ADAPT requirements, a brief explanation is needed about the context in which
those requirements apply. The object to which the ADAPT tool is applied is a Cloud Native Application
(CNA) possibly developed according to the micro-services architecture and deployed on multiple Clouds
using Containers technology. This section briefly explains the concepts indicated above and analyzes
some issues arising when deploying applications in a multi-cloud environment.

2.4.1 What is a Cloud Native Application

A Cloud Native Application is software precisely developed for virtualisation environments or the so-
called cloud computing platforms. Cloud native applications are designed in such a manner that they
get the most out of services provided by virtualised infrastructures.

In general, cloud native applications have these characteristics:

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 21 of 77

www.decide-h2020.eu

• Large number of parallel processing units. It consists of a large number of parallel processing
units, in addition to being able to run different parts of the application at the same time and
store data in different locations simultaneously.

• Full use of cloud resources. These applications use Application Programming Interfaces (API)
and other methods to simplify administration tasks and efficiently use most of the available
resources (processor, memory and storage).

• Multi-cloud paradigm. Migration and deployment in multiple Cloud Service Providers (CSP) in
a simple, transparent and with the least possible impact on end users.

In other words, the cloud-native approach is based on developing and running applications that exploit
all the advantages of the cloud computing service model. The importance lies in how applications are
created and deployed, and not so much where they are running. In this way, developers can make use
of almost unlimited computing resources, according to their needs, along with cutting-edge data and
application services. As a result, companies developing and deploying cloud native applications are
able to bring new products to markets faster and meet customer requirements sooner.

Organizations eager to start developing cloud native software need platforms that automate and
integrate concepts like DevOps, continuous delivery, microservices and containers.

Figure 1. Fundamentals of a Native Cloud Application [3]

2.4.2 Microservices Architecture

As a summary, a microservice architecture could be defined as an application development technique
consisting of several independent services that execute a single process and communicate with each
other through simple and transparent protocols to fulfil a common purpose. In this way, each
microservice can be deployed and restarted in isolation, offering the possibility to launch updates
regularly, and maintaining the SLA (Service Level Agreement) agreed with end customers.

Needless to say that communication between services is tied to the application’s requirements, but a
large majority of developers seem to opt for HTTP/REST with JSON or Protobuf [4]. It is worth
mentioning that DevOps professionals usually choose Representational State Transfer (REST) as the
most appropriate communication protocol because it is lighter than others [5].

In order to better understand the microservice architecture, a brief comparison with its opposite, the
traditional monolithic architecture, is presented in the table below.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 22 of 77

www.decide-h2020.eu

Table 4. Microservices vs Traditional Architecture

Microservices Architecture Traditional Architecture

Single focus. They are targeted at a specific
problem, and contain everything needed
including data.

Wide focus. They attempt to solve many
problems at once in a tightly closed software
package.

Simple updates. Only the required services are
updated, built and deployed.

Tedious updates. A modification made to a small
section of an application might require building
and deploying an entirely new version.

Loosely coupled. This architecture demands
services to be as independent as possible,
avoiding hard-coded references to others.

Tightly coupled. These systems are often a
tangled set of interrelated components that
require meticulous manual procedures to be
deployed successfully.

Scalable by nature. The microservice
architecture allows modifying the resources
needed for each service on demand.

Almost no scalable. In the case of having to scale
specific functions, it may result in having to scale
the entire application instead of just the desired
components.

Delivered continuously. Microservices are ideal
for applications with constantly updates. They
usually require delivering value to market as
quickly as possible; hence microservices are
regularly deployed in production through
automated tasks.

Scheduled delivery. Applications are developed
and updates are made according to schedule,
often at much slower rates than the
microservice architecture.

Independent teams owning the service life
cycle. Microservices are built, deployed, and run
by independent teams.

Many teams owning the services life cycle.
Developers are responsible for building the first
iteration of software, and then it is handed over
to Operations to be maintained accordingly.

Design patterns and distributed systems at
scale. Microservices architectures rely on a set of
tools for service discovery, messaging, network
routing, failure detection, logging, storage and
identity.

Processes come first. Isolated tools and
processes, focused on development, Quality
Assurance (QA), and release to production,
produce monolithic applications.

2.4.2.1 Stateful vs Stateless Applications

REST is one of the most widely used communication protocols in microservices architecture. This
protocol is based on the concept of statelessness. A stateless object maintains neither information
relative to the user, nor context related to the application between calls to the same object. Each call
is independent of previous calls and is not part of an ongoing call. This does not mean that data or
context are not used, but this information is not preserved between different calls. If it were necessary
to save state information, it would be stored in the client. In contrast, stateful applications use the
data stored in previous client sessions each time the client makes a new request. The following diagram
illustrates the essential differences between stateful and stateless applications.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 23 of 77

www.decide-h2020.eu

Figure 2. Stateful vs Stateless Software Design [6]

According to the figure above, a stateless application splits the code from the state so that the state
becomes an immutable object, meaning that it changes one state into another. This is what computer
scientists call referential transparency [7]: the ability to replace a computation with the value it returns
without changing the behaviour of the program.

So why the growing interest in stateless software design? One reason is that stateless applications can
either be easily deployed again in the event of failure, or be scaled to balance peak loads. Another
reason is that stateless applications can effortlessly connect to other applications through APIs.

In addition to this, the so-called functional programming, which uses microservices and containers
technology, is also promoting the development of stateless applications. This programming approach
is based on the development of small parts of immutable code. In this way, each function executes its
task without depending on the rest of the functions in the program and without taking into account
previous executions. This flexibility gives developers the ability to join functions in different manners
without the risk of dependencies among them.

2.4.2.2 Advantages of Multi-cloud Applications

After outlining the concepts of cloud native applications, microservice architecture and stateless
applications, this subsection presents the advantages of embracing the paradigm of multi-cloud
applications.

• Minimise the risk of widespread data loss and keep at a minimum downtime. Cloud
platforms are very complex computing environments that inherently have multiple points of
failure: hardware, software or infrastructure. Due to the use of two or more cloud services it
is possible to ensure SLAs agreed with customers.

• Improve the overall performance of organisations. Multi-cloud strategies promote the use of
open source and standardised technologies, avoiding vendor lock-in with proprietary
solutions. The diversity of multi-cloud ecosystems facilitates compliance with the
requirements of a wider range of partners and customers.

Stateful

State

Computation 1 Computation 2

Retrieve Update

RetrieveUpdate

Stateless

State 1 Computation 1 State 2 Computation 2 State 3

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 24 of 77

www.decide-h2020.eu

• Impact directly on customer satisfaction. The speed with which a particular website loads its
content is strongly linked to the satisfaction of end users. Websites with faster page loads
usually have more frequent and longer visits, so search engine rankings are also affected. A
multi-cloud deployment can help significantly reduce the load time of an organisation’s web
applications.

• Optimise the traffic of customers and partners. In addition to providing the redundancy
required to efficiently reduce fault tolerance, in a multi-cloud environment it is also possible
to route traffic based on the type of client, the content to be distributed, and the nature of the
application. For instance, some CSPs offer servers and networks best suited to handle large
numbers of requests requiring small data transfers, while other CSPs have a portfolio which
performs best for smaller numbers of requests with larger data transfers.

2.4.2.3 Disadvantages of Multi-cloud Applications

In the same way that some advantages of multi-cloud applications have just been presented, below
are the challenges of this cutting-edge paradigm:

• Limited interoperability. There is currently no complete interoperability between different
cloud providers. This forces developers to use workarounds to successfully deploy applications
on different platforms and clouds.

• Greater complexity. This is the biggest challenge of multi-cloud applications. Developers and
administrators have to deal with different interfaces, technologies and services. There are
currently neither standardised terminologies nor methodologies across cloud providers.

• More workload. Implementing a multi-cloud environment brings a greater workload for
developers and DevOps teams. It first takes longer to select the right services to use from each
provider. They also have to learn how to integrate their applications with the different
infrastructures and APIs available. In fact, it is sometimes necessary to maintain specific source
code versions for each provider. Once applications are in production, it is more complex for
DevOps engineers to manage and maintain their performance across multiple clouds.

• Difficulty to estimate costs. The flow of application data into or out of the infrastructure of
each cloud provider generates costs which are difficult to calculate accurately. It is required to
conduct an in-depth review of the pricing structure of each service used to come up with an
approximation of the overall cost.

2.4.3 Containers Technology

At present, there is a real buzz about container technology and the multi-cloud paradigm. But what is
a container? In simple terms, containers wrap software up within a complete file system that contains
everything it needs to run: code, runtime, system tools and system libraries. This is really significant
because this guarantees that it will always run the same, regardless of the environment it is running
within.

Containers use namespace isolation, resource control, and process-isolation technologies to restrict
the files, network ports, and running processes that each container can access, so that applications
running in containers cannot interact or see other applications running in the host OS or in other
containers.

Sometimes Docker is mistakenly used to refer to containers. Docker is the name of a company which
has made containerization easy. Docker makes applications deployable anywhere in spite of the
underlying infrastructure. Nevertheless, container technology is actually provided by the Linux Kernel.
It is an operation call chroot or change root that changes the apparent root directory for the current
process and its children. Consequently, a process running in such an environment cannot access files
outside the designated directory tree.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 25 of 77

www.decide-h2020.eu

A container is kind of a “super chroot”, with Kernel namespaces1 and cgroups or control groups2. The
latter one provides resource limitation (CPU, memory, disk I/O) in order to prevent a container from
running always and forever by uniquely hogging all available hardware resources. As for the
namespaces, there are several of them, but the most important are PID and NET which provide process
isolation and network isolation, respectively. This gives containers isolation from all other processes.
Containers assume they have their own dedicated operating system.

So, are containers like Virtual Machines? The following table summarises the essential differences
between Virtual Machines and Containers.

Table 5. Differences between VMs and Containers

Virtual Machines Containers

Run an entire OS. A VM has to run a complete
Operating System.

Run an application. However, a container just
run an application.

Heavyweight. A VM is very heavyweight in terms
of file size. It might be 1 or 2 GB inside.

Lightweight. Containers can be lightweight, even
down to just a couple hundred of megabytes or
even less than that.

Slow provisioning. Because of file size, VMs are
very slow provisioning, normally around a
minute.

Real-time provisioning. Containers can spin out
under half a second, even in real-time like a few
hundred milliseconds.

Hardware-level virtualisation. This is the most
important difference. The VMs are really
concern about virtualising the hardware.

Operating System virtualisation. Containers are
concern about virtualising the Operating System.

In brief, the following comparisons can be used. VMs are like houses, they are fully self-contained.
They have their own heating and plumbing. Whether or not you want your own kitchen, that is what
you get. Containers are like apartment buildings. They share their resources, the plumbing and the
heating. The following diagram can help visualise both technologies.

1 Linux Kernel feature that isolates and virtualise system resources of a collection of processes.
2 Linux Kernel feature that allows to allocate resources among user-defined groups of processes running on a
system.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 26 of 77

www.decide-h2020.eu

Figure 3. Traditional VM vs Containers Technology [8]

2.4.4 Deployment Issues

After providing an overview of cloud native applications, microservice architecture, and container
technology, this last subsection outlines recommendations for the successful deployment of multi-
cloud applications.

The first question to address is how many microservices should be accommodated per container. The
answer from developers is clear: only one microservice per container. This allows containers to be
tailored to that specific service. In this way, the dependencies of that service will not conflict with those
of other services as they would be running within their own containers. Examples of this are specific
versions of libraries, or even the specific flavour of an operating system that works best for a particular
microservice.

The next question is how many containers per virtual machine. Deploying multiple containers on a
single VM is expected. As mentioned earlier, containers do not have the overhead of running a whole
OS, which means that it is more RAM-efficient to run multiple containers on the same server. However,
to run many containers, DevOps teams tend to use an orchestration tool to network them together
and manage their life cycle. At the moment, the most popular tools are:

• Docker Swarm [9]. More and more developers are using Docker to deploy applications,
although administrators need to spend time managing even more containers, particularly
those used for large-scale web applications, especially for high availability or access to large
computing power. Orchestrating those applications requires a multi-host approach, so Docker
Inc. has recently introduced this tool to manage the distribution and orchestration aspect of
those applications on multiple machines.

• Kubernetes [10]. Also called K8s, it is an open-source system for automating deployment,
scaling and handling applications hosted in containers. It was originally designed by Google
and donated to the Cloud Native Computing Foundation, part of the Linux Foundation.

• OpenShift [11]. Red Hat OpenShift is a complete container application platform that natively
integrates technologies such as Docker and Kubernetes, and combines them with a business
foundation in Red Hat Enterprise Linux.

Finally, how could we find and use containers deployed in multiple clouds? If an organisation opts to
do things ‘The Docker Way’ [12], then as long as the virtual machines can expose the Docker Machine
daemon, it is possible to use VMs in different clouds as part of the same Docker Swarm. If a team

Server

Host OS

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Bins/
Libs

Bins/
Libs

Bins/
Libs

App A App A App A

VM

Server

Host OS

Bins/ Libs

Container

Bins/ Libs
A

p
p

 A

A
p

p
 A

’

A
p

p
 B

A
p

p
 B

’

A
p

p
 B

’

A
p

p
 B

’

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 27 of 77

www.decide-h2020.eu

favours Kubernetes, or a similar, enterprise container-orchestration system, it is possible to run
multiple Kubernetes clusters in different Data Centres or within different clouds and ‘federate’ [13]
them, so that containers can be all controlled from a single API as if they were in a single cloud. As a
reference, section 3.4 Improving Business Continuity introduces how the DECIDE framework could
alleviate issues of multi-cloud environments.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 28 of 77

www.decide-h2020.eu

3 High Level ADAPT Functionalities

This section reports about the high level functionalities identified so far for the DECIDE ADAPT tool.

3.1 ADAPT in the overall DECIDE flow

Figure 4. DECIDE workflow

In the previous picture the overall DECIDE workflow at M6 is shown (more detail can be found in [2]).
This workflow represents the support that DECIDE tools provide to the complete software
development and operation lifecycle for multi-cloud aware applications. This workflow is continously
evolving, as the specification of the tools are still in the initial stages and they may change during the
project.

DECIDE ADAPT is a framework that provides generic functions for :

• deploying multi-cloud applications to diverse cloud platforms,

• monitoring the deployed applications to verify that the non-functional requirments are being
fullfilled

• adapting the deployment in order to restore the required working conditions in case the NFR
are violated

DECIDE ADAPT supports the operation phase of multi-cloud aware applications by providing means for
automatic distributed deployment, run-time monitoring of the current deployment with repect to
selected non-funtional requirements and SLOs and re-deployment adaptation when needed.

DECIDE ADAPT has several interfaces, both with the user (operator) of the multi-cloud application and
with external components (other DECIDE tools) as explained next.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 29 of 77

www.decide-h2020.eu

DECIDE ADAPT user interface will provide the operator of the application with the functionality of
confirming the deployment configuration automatically provided by ADAPT and with a graphical
interface where to check the actual compliance of the NFRs and SLOs of the multi-cloud application.
This ADAPT UI will provide the required alerts if the required working conditions are not met.

With respect to the interfaces with other DECIDE components, DECIDE ADAPT will interact with the
following tools:

• DECIDE OPTIMUS: When any of the NFRs or SLOs are not met, DECIDE ADAPT will request
OPTIMUS to launch a new simulation so that the re-adaptation of the deployment takes place.

• DECIDE Application Controller: In order to perform the actual deployment the different
components of the multi-cloud application, DECIDE ADAPT needs the corresponding
resources, contracted and properly detailed so that the software components can be
deployed. The Application Controller will request the deployment to ADAPT when all these
parameters are updated in the Application Description.

• DECIDE ACSmI: DECIDE ADAPT monitors the fullfillment of the NFR and the SLOs, at application
level. That compliance, depends on the underlying resources where the components of the
multi-cloud application are deployed. For this reason, DECIDE ADAPT will request from the
ACSmI the CSPs metrics in order to assess the compliance or not of the NFR and SLOs at
application level. ADAPT will also obtain and release cloud resources through ACSmI.

The Application Description is the main information repository for the different tools in DECIDE
toolchain, including DECIDE ADAPT. DECIDE ADAPT will use the Application Description to retrieve all
the necessary information for performing its functionalities. More information about Application
Description is included in section 5.1 of the current document.

ADAPT uses the information contained in the Application Description to deploy the multi-cloud
application in the different CSPs. ADAPT performs the actual deployment and after executing any
optional test, if provided by the developer, switches the application online. ADAPT gets the
information about what/when/where and how to monitor from the Application Description. ADAPT
continuously monitors the MCSLA and if a violation occurs (the violation can come from the violation
of the SLA of any of the cloud services contracted) informs the developer through the ADAPT UI, sends
an alert and launches the automatic re-deployment process if applicable (depending on the level of
technology risk). In any case, ADAPT sends OPTIMUS a request for a new deployment schema and a
report about the violation, so that OPTIMUS can include this information in the simulation. OPTIMUS
performs the simulation (the application classification and the NFRs remain the same). When the new
deployment configuration is created, ADAPT is invoked again.

3.2 ADAPT Use Cases

High level functionalities in DECIDE ADAPT are represented in the UML Use Case Diagram shown in
Figure 5 below, grouped by component. The functionalities are briefly explained in the following
subsections. The mapping between the functionalities identified by the use cases and the collected
requirements is reported in section 3.3.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 30 of 77

www.decide-h2020.eu

Figure 5. DECIDE ADAPT Use Case Diagram

3.2.1 ADAPT Deployment Orchestrator

UCDO01 – Deploy application

This is the main functionality of ADAPT, called by the DECIDE Application Controller. ADAPT will get all
the needed information from the input Application Description document, as indicated in

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 31 of 77

www.decide-h2020.eu

requirements WP4-REQ34 and WP4-REQ37, and will orchestrate the multi-cloud deployment of the
user application. The Application Description is detailed is section 5.1.

This use case represents the first deployment of the user application, any further deployment is
represented by Use Case UCDO03. No confirmation is needed by the operator for this first deployment.

The Use Case starts by obtaining the required resource for each Cloud Service Provider indicated in the
Application Description (uses UCACSmI02), then generates the deployment scripts (uses UCDO06),
performs the deployment of each of the given components (uses UCDO02), and finally starts up
monitoring for the application (uses UCMM01). The new deployment state is then archived (uses
UCDO07).

This use case is also responsible for ensuring that the resources obtained through ACSmI offer a proper
container environment to the UCDO02 included use case. For example, in case the resources are plain
Virtual Machines, it should setup the (Docker) container environment into them.

UCDO02 – Deploy component

As component to be deployed here we mean a containerized (micro)-service, as indicated by requisite
WP4-REQ36.

Prerequisite for deploying a component is a running container (i.e. Docker) environment.

The first step for this use case is to retrieve the container image, using the information provided in the
Application Description; then to apply any needed configuration, such as networking, storage, or even
monitoring support; and finally to start the container, with all the required parameters that will ensure
a smooth execution of the included microservice(s), such as ports to be published, environment
variables to be defined, etc.

UCDO03 – Redeploy application

When the ADAPT deployment entry point is called for a running application, the redeployment
functionality is invoked.

If the application is flagged as a High Technology Risk application (see requirements WP4-REQ20, WP4-
REQ21 and WP4-REQ22), ADAPT will first ask the operator to confirm the deployment configuration
indicated in the Application Description. The following logical steps are to undeploy the running
application (uses UCDO04) and to deploy the application according to the new configuration (uses
UCDO01).

This functionality can be optimized in several ways, if the right conditions apply. For example, if only a
subset of the application components should be redeployed, only those components should be
stopped and then restarted, possibly elsewhere. In this case the stop/start monitoring operations
should impact only the redeployed components. Another optimization, which can be applied if ADAPT
can control the Service Registry and Proxy component of the application, is the dynamic management
of the service endpoints mapping described in Section 3.2.5, which aims at minimizing application
downtime.

UCDO04 – Undeploy application

Both in case of a redeployment and in case of a complete stop, a subset or all of the micro-services
composing the application should be undeployed. Completely undeploying an application entails
undoing its last deployment.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 32 of 77

www.decide-h2020.eu

The original Application Description (either kept by ADAPT or retrieved from elsewhere) should be
available, along with further intormation about the last deployment of the application, such as the
address and SSH keys of the VMs hosting the components (likely kept by ADAPT).

The steps needed for undeploying an application are opposite to those used for deployment, both in
type and in order, and should be executed for each one of the CSPs where the application has been
deployed: stop monitoring (use UCMM053), undeploy each component (uses UCDO05), and finally
release the resources (use UCACSmI03).

UCDO05 – Undeploy component

Undeploying a component will stop the related application functionality. In the interest of business
continuity, even if the component is stateless (see requirement WP4-REQ35), this should happen as
gracefully as possible, ideally by stopping all the incoming requests and waiting until all the current
ones return their result to the caller. This graceful behavior should be supported by the application,
which typically can implement it by handling a proper warning signal in the shortest possible time4.

The first step for undeploying a component is therefore to warn the running process that a stop will
shortly follow, then the processing of the component is stopped and finally any needed cleanup is
performed.

UCDO06 – Generate deployent scripts

The deployment scripts, which will operate to deploy components on the resources obtained from
ACSmI, are generated for the specific implementation technology starting from the information in the
application description. This functionality has been moved from OPTIMUS to ADAPT: see an
explanation in section 4.1.

UCDO07 – Record current deployment

After the deployment has been performed the new deployment state is archived.

3.2.2 ADAPT Monitoring Manager

UCMM01 – Start monitoring

Once the deployment of the application is triggered by the ADAPT deployment orchestrator, the
monitoring request occurs. The ADAPT Monitoring Manager will receive the request for starting the
monitoring of the application. The ‘Start monitoring’ process will include the following actions:

• Request the SLOs, the NFRs and the MCSLA values to be monitored

• Establish the (new) measurements to be gathered both at software level and at resource level.
If any of the established metrics is already being monitored, only the new ones will be
configured and deployed for monitoring.

• Deploy the data collection means (i.e. agents) along with the multi-cloud application
components.

• Launch the Monitor CSP’s violation process.

3 Note that during redeployment only the part of the monitoring functionality related to the old infrastructure
should be stopped: monitoring the high level application SLA should continue, otherwise the redeployment
operation would artificially appear not to have any impact on the application availability.
4 The docker stop command for example takes a parameter (-t) to specify the timeout between the SIGTERM

and SIGKILL signals sent to the main process inside the container.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 33 of 77

www.decide-h2020.eu

UCMM02 – Monitor application’s MCSLA

After the monitoring of the application has been configured, the monitoring process starts. The
deployed agents continously provide measurements to be stored (sampling of the metrics). The ADAPT
monitoring components aggregates the stored data to create the required values to be compared with
the established SLOs and MCSLA thresholds. The monitored measures are provided to the multi-cloud
application through the UI.

When an application is not being monitored any more, the ADAPT monitoring component will mark
the corresponding registries in the data base as not being monitored (they will not receive any
measurement anymore). The corresponding measures are not being shown any more in the user
interface.

UCMM03 – Monitor CSPs’ violations

This functionality covers the request for start/stop the monitoring the metrics of the CSPs and the
subscription to the monitorization channel (listener to the CSPs metrics).

UCMM04 – Raise violations

The measured and compiled data is continously being assessed against the SLOs and thresholds. When
a violation is detected an alert is sent by the ADAPT Monitoring to the operator. At the same time the
violation detection is sent to the Violations Handler so that the corresponding actions are triggered.

UCMM05 – Stop monitoring

When the ADAPT Monitoring receives the request for stopping the monitoring for any of the
components of the application, the following actions need to be performed:

• Stop the monitoring agents and release the corresponding resources.

• Stop the calculation and assessment of the aggregated measurements.

3.2.3 ADAPT Violations Handler

UCVH01 – Handle violations

When a violation occurs, ADAPT is able to automatically perform certain actions, such as redeploying
the application to ensure that it meets the established SLOs and MCSLAs. The ADAPT Violations
Handler receives violation notifications from the Monitoring Manager and:

• Notifies the operator by email.

• Communicates with OPTIMUS, providing it with the necessary information to trigger a new
simulation.

If the application is a low technological risk one, the operator will be notified and OPTIMUS will be
triggered. Then, according to the results of the simulation, the application will be automatically
redeployed by ADAPT.

If it is a high technological risk one, the operator will be notified and OPTIMUS triggered as well, but
the operator will have the chance to modify the simulation parameters before it takes place, and the
redeployment will not occur without the operator’s confirmation.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 34 of 77

www.decide-h2020.eu

UCVH02 – Archive violations

This functionality takes care of storing the history of alerts, along with the information about what
caused the alert.

3.2.4 ADAPT UI

UCUI01 – Confirm deployment

In case the application has been identified as high technological risk, as indicated by requirements
WP4-REQ21, WP4-REQ22 and WP4-REQ23, its redeployment cannot be automatic but must be
confirmed by the operator.

The User Interface will propose to the operator the new deployment configuration, as calculated by
OPTIMUS. Any selection of deployment alternatives has already been done as part of the OPTIMUS
workflow. The new configuration may involve using resources from one or more Cloud Service
Provider, which must have already been contracted by ACSmI. The operator has just to confirm that
the selected configuration can be deployed.

Confirming the previously selected configuration automatically selects the related deployment scripts
and authorizes their execution.

UCUI02 – Alert operator

When a violation occurs, this functionality will take care of notifying the operator by means of an email
that contains the most relevant information about the violation and to display the alert on the UI.

UCUI03 – Show live metrics

ADAPT will show the monitored metrics through the UI. A dashboard with the status of the monitored
NFRs will be shown, as well as more detail for each metric being measured (SLO of the metric vs. actual
measured value. As the metrics will be continously measured, the operator of the multi-cloud
application can access the dashboard whenever he or she wants during the operation of the
application.

3.2.5 ADAPT Service Registry and Proxy

Application's components (microservices) should communicate via a proxy so that communication can
be maintained even in case of migration (it could also handle load balancing). The proxy should be part
of the application and is a useful pattern that ARCHITECT could propose to the developer, but ADAPT
can also optionally provide it.

This component is shown with a grey background in Figure 6 to indicate that it is an optional
component.

UCSP01 – Register

This functionality allows a component to update the Service Registry of the application to indicate its
reachability status and the related endpoint coordinates. This information is used by the Proxy to
properly redirect incoming calls to the component.

UCSP02 – Invoke component

This functionality allows an application component (or even an external client) to invoke a registered
application component. If the desired component is available the incoming call is redirected to it by

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 35 of 77

www.decide-h2020.eu

the (reverse) Proxy, using the registered endpoint. A circuit breaker pattern can be optionally applied
to avoid too many repeated timeouts in case of service failure.

This proxying functionality can include load balancing, in case more than one endpoint is registered for
the same component.

The Proxy, by interposing in every call to a component, could also allow to monitor specific application
metrics, such as availability or response time.

3.2.6 External DECIDE components

Use cases in this section briefly describe functionalities expected to be implemented by other DECIDE
components external to ADAPT.

UCACSmI01 – Monitor CSPs’ NFP

When a deployment configuration has been selected, and the deployment of the multi-cloud
application has been performed, the monitoring component of ADAPT needs to start the monitoring
of the behaviour of the multi-cloud application and the underlying cloud resources. The ADAPT
monitoring component will send the request to the ACSmI for getting the needed metrics from the
cloud resources where the components are being deployed. The collection of this data will be
continously collected as they are real data.

UCACSmI02 – Obtain resources

This use case is the first step of the UCDO01 – Deploy application use case. When the DECIDE
Application Controller calls ADAPT, this need to request ACSmI to obtain the needed resources from
the CSPs to deploy the different components of the multi-cloud application. The information about the
concrete resources needed in the request is obtained from the Application Description. The
Application Description will be updated by the ACSmI with the corresponding information so that the
application can be deployed in the selected cloud resources (UCDO01).

UCACSmI03 – Release resources

Once a violation has been detected the re-deployment process starts (UCDO03 – Redeploy
application). As part of this re-deployment process and once the component have been undeployed
from the cloud resources (UCDO05 – Undeploy component), the “old” resources need to be released.
The request to release these resources is sent form ADAPT to the ACSmI, which will release the
resources and send a confirmation back to ADAPT, stating that the release of the resources have been
successfully implemented.

UCOPTIMUS01 – Start redeployment simulation

When ADAPT identifies a violation in the application MCSLA, or in one of the supporting CSPs’ SLAs, a
new deployment configuration has to be found to cope with the identified issue. In this case ADAPT
asks OPTIMUS to start a redeployment simulation, passing as a parameter details about the identified
violation (see requirements WP4-REQ27 and WP4-REQ43) so that the simulated configuration can
provide a solution to it.

3.3 Requirements mapping

As already indicated in section 2.3, a detailed analysis has been performed to map lower level
requirements with the identified use cases. The result of this work is reported in the following sections,
dedicated to the major ADAPT components.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 36 of 77

www.decide-h2020.eu

3.3.1 Deployment requirements mapping

The following Table 6 shows the mapping between ADAPT deployment-related use cases and their requirements. The requirements’ description is the same
as that reported in section 2 and has been repeated here for reading convenience.

Table 6 . Mapping between deployment use cases and requirements

Req. ID Description UCDO
01
Deplo
y
applic
ation

UCDO
02
Deplo
y
comp
onent

UCDO
03
Redep
loy
applic
ation

UCDO
04
Unde
ploy
applic
ation

UCDO05
Undepl
oy
compon
ent

UCDO-
06
Genera
te
deploy
ent
scripts

UCDO
07
Recor
d
curren
t
deplo
yment

UCU-
I01
Confir
m
deplo
ymen
t

WP4-REQ1 DECIDE ADAPT will support the self-adaptation and dynamic re-deployment of
(parts of) multi-cloud applications when certain conditions are not met.

X X X X X X

WP4-REQ3 DECIDE ADAPT will pro-actively adjust the running configuration of the
application

X

X

WP4-REQ9 DECIDE ADAPT [KR5], the application self-adaptation tool will support
automated dynamic deployment of service components as well as the runtime
monitoring of functional and non-functional service properties.

X

X

WP4-
REQ12

DECIDE OPTIMUS [..] will provide [..] automation of the provisioning resources
and deployment scripts for multi-cloud native applications

 X

WP4-
REQ14

The developer will select the deployment scripts based on the selected
configuration from the simulation phase through the continuous deployment
supporting tools and the architectural patterns for deployment

 X

WP4-
REQ15

Each deployment configuration will be stored in the multi-cloud native
application controller, maintaining the current deployment configuration

 X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 37 of 77

www.decide-h2020.eu

Req. ID Description UCDO
01
Deplo
y
applic
ation

UCDO
02
Deplo
y
comp
onent

UCDO
03
Redep
loy
applic
ation

UCDO
04
Unde
ploy
applic
ation

UCDO05
Undepl
oy
compon
ent

UCDO-
06
Genera
te
deploy
ent
scripts

UCDO
07
Recor
d
curren
t
deplo
yment

UCU-
I01
Confir
m
deplo
ymen
t

situation as well as the historic of the previous deployment configuration used,
so that they can be checked in the re-deployment phase

WP4-
REQ21

If the application configuration has been established as of low technological risk,
the multi-cloud application will be self-adaptive and it will be redeployed
automatically, following a new deployment configuration.

X

X X

WP4-
REQ23

[DECIDE ADAPT] will support the selection of the new deployment scripts (based
on the architectural patterns for deployment), and thus semi-automatically re-
deploy it [the application].

X

 X

WP4-
REQ28

DECIDE ADAPT is a framework providing a deployment orchestrator (workflow
manager for orchestrating the actions required for deploying the multi-cloud
application)

X X

WP4-
REQ30

DECIDE ADAPT is a framework providing an adaptation workflow manager
(establishes the workflow and performs the adaptations actions)

X

WP4-
REQ34

The actual deployment, monitoring and adaptation of an application is obtained
"feeding" DECIDE ADAPT with a description of the application containing the
related helpers

X X X X X X

WP4-
REQ35

ADAPT will support applications based on composition of stateless (possibly
micro) services

X X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 38 of 77

www.decide-h2020.eu

Req. ID Description UCDO
01
Deplo
y
applic
ation

UCDO
02
Deplo
y
comp
onent

UCDO
03
Redep
loy
applic
ation

UCDO
04
Unde
ploy
applic
ation

UCDO05
Undepl
oy
compon
ent

UCDO-
06
Genera
te
deploy
ent
scripts

UCDO
07
Recor
d
curren
t
deplo
yment

UCU-
I01
Confir
m
deplo
ymen
t

WP4-
REQ36

ADAPT will support composable applications where each composition unit is a
containerized service

X

X

WP4-
REQ44

Users will perceive relevant improvements in the business continuity since as
soon as there is a problem (i.e. lack of resource due to a peak of requests) the
software is automatically re-adapted and re-deployed

X X X

DEVOPS-
REQF6

DECIDE framework must support the continuous deployment of the developed
apps

X X

DEVOPS-
REQF16

DECIDE must support the semi-automatic adaptation and redeployment of the
application into new cloud services when needed based on the assessment of
the continuous monitoring

X

 X

3.3.2 Monitoring requirements mapping

The following Table 7 shows the mapping between ADAPT monitoring-related use cases and their requirements. The requirements’ description is the same
as that reported in section 2 and has been repeated here for reading convenience.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 39 of 77

www.decide-h2020.eu

Table 7. Mapping between monitoring use cases and requirements

Req. ID Description UCMM01
Start
monitoring

UCMM02
Monitor
application’s
MCSLA

UCMM03
Monitor
CSPs’
violations

UCMM04
Raise
violations

UCMM05
Stop
monitoring

UCUI03
Show
live
metrics

WP4-REQ2 [Conditions not met] include for instance, that the defined composite multi-cloud
application SLA is not being fulfilled, the application is not performing as established
or the cloud service providers (CSPs) are violating the contracted SLAs.

X

WP4-REQ4 {Adjustment will be} based on measurements that are derived from the dynamic
monitoring activities of both the application and the non-functional properties of the
CSPs and cloud offerings where the application is deployed and making use of.

X

WP4-
REQ18

During the application operation phase, the DECIDE self-adaptation application
provisioning tool (ADAPT [KR5]) will continuously monitor and assess the fulfillment
of the established NFR and MCSLA

X X

WP4-
REQ19

If a violation of any of the [former: NFR and MCSLA] metrics occurs, the self-
adaptation tool through the ACSmI will assess the operation of the (combination of)
cloud services selected and discard those that are affecting the MCSLA

X X X

WP4-
REQ27

DECIDE ADAPT [KR5] will provide the operator a report with the NFPs that are not
being fulfilled and an input file to be able to simulate a new deployment topology
through DECIDE OPTIMUS

WP4-
REQ29

DECIDE ADAPT is a framework providing a monitoring engine to monitor if the
working conditions meet the NFR and to trigger alarms (high technological risks) or
actions (low technological risks)

X X X

WP4-
REQ34

The actual deployment, monitoring and adaptation of an application is obtained
"feeding" DECIDE ADAPT with a description of the application containing the related
helpers

X

X X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 40 of 77

www.decide-h2020.eu

Req. ID Description UCMM01
Start
monitoring

UCMM02
Monitor
application’s
MCSLA

UCMM03
Monitor
CSPs’
violations

UCMM04
Raise
violations

UCMM05
Stop
monitoring

UCUI03
Show
live
metrics

WP4-
REQ41

DECIDE ADAPT [KR5] can also be easily extended with the inclusion of more NFPs that
need to be measured, as well to different types of applications such as those
following the mobile cloud paradigm or IoT

X X

DEVOPS-
REQF3

DECIDE framework must be able to monitor the deployed micro-services X X

X

DEVOPS-
REQF9

DECIDE framework must be able to track the issues that affect the deployed services
and use registries to store this information

X

X

DEVOPS-
REQF15

DECIDE must support the monitoring of the multi-cloud application SLA and the SLAs
of the underlying cloud resources

X X

DEVOPS-
REQF17

DECIDE must support the monitoring of the SLAs of the underlying cloud resources X X

3.3.3 Violations Handling requirements mapping

The following Table 8 shows the mapping between the use cases related to violations handling and their requirements. The requirements’ description is the
same as that reported in section 2 and has been repeated here for reading convenience.

Table 8. Mapping between violation handling use cases and requirements

Req. ID Description UCVH01
Handle
violations

UCVH02
Archive
violations

UCUI02
Alert
operator

WP4-REQ19 If a violation of any of the [former: NFR and MCSLA] metrics occurs, the self-adaptation tool through the
ACSmI will assess the operation of the (combination of) cloud services selected and discard those that
are affecting the MCSLA

X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 41 of 77

www.decide-h2020.eu

Req. ID Description UCVH01
Handle
violations

UCVH02
Archive
violations

UCUI02
Alert
operator

WP4-REQ21 If the application configuration has been established as of low technological risk, the multi-cloud
application will be self-adaptive and it will be redeployed automatically, following a new deployment
configuration.

X

WP4-REQ22 In case the application has been identified as high technological risk, once it has identified the aspects
that are affecting the malfunctioning of the application, it will alert the operator and using the OPTIMUS
tool it will look for new (combination of) cloud services to set up a new deployment schema

X X

WP4-REQ27 DECIDE ADAPT [KR5] will provide the operator a report with the NFPs that are not being fulfilled and an
input file to be able to simulate a new deployment topology through DECIDE OPTIMUS

X X

WP4-REQ40 KPI EI3.3: fulfilment of the application’s MCSLA by 99% X

WP4-REQ43 If the application configurations are classified with high technological risk, [re-adaptation involves]
simulating again the deployment with DECIDE OPTIMUS but in a more driven and accurate way, entering
now as input, the identified problems so that the new configuration can provide a solution to that
problem.

X

DEVOPS-REQF9 DECIDE framework must be able to track the issues that affect the deployed services and use registries
to store this information

X

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 42 of 77

www.decide-h2020.eu

3.4 Improving business continuity

Continuous Integration followed by Continuous Deployment entails many incremental development
steps, each followed by a software release, leading to frequent application deployments, which may
impact applications’ uptime and therefore business continuity.

On the other end DECIDE promises to improve business continuity (WP4-REQ44) by automatically re-
adapting and re-deploying an application as soon as a problem is raised (e.g. lack of resources due to
a peak of requests), but also coping with SLA violations of the running production software usually
results in further deployments.

Redeployment of an application involves stopping and undeploying the current release, or at least part
of it, and deploying the new one. The expected high number of application redeployments therefore
poses a fundamental question: how to redeploy an application without impacting business continuity?
Or at least: how to lower impact on business continuity while redeploying an application? The key
requirement here is to minimize application’s downtime during redeployment.

The first answer to this requirement is to build cloud-native applications according to the
microservices architecture (see section 2.4.2). In this way an application is built up by multiple
cooperating services, each one providing its own specialized functionality. Each of these services could
be stopped and restarted independently from the others, thus adding a finer granularity dimension to
redeployment and laying the basis to avoid stopping the whole application when releasing a new
version.

Building an application with microservices is just the first step, but is not enough to have
redeployments which do not impact availability: to be able to easily stop and restart a microservice, it
should be stateless. Stopping a stateless microservice will not result in data loss (even if it may lead to
data inconsistency if the application is not properly designed). Obviously if the stopped microservice
is the only one performing a particular functionality, then that functionality will not be available again
until the microservice is restarted, possibly elsewhere.

The next step towards low impacting redeployments is therefore the replication of microservices. If
the application has more than one instance (microservice) of a functionality running, then the single
microservice can in theory be redeployed without impacting availability of that functionality. The full
benefit of replication comes when it is coupled with load balancing: the load balancer evenly
distributes requests among the active instances and is aware of when an instance is shutting down
thus redirecting the load to other microservices.

Speaking about load redirection it becomes apparent the need for a fundamental pattern in
microservices-based applications: the service registry. This registry allows clients to discover the
location (host and port) of the active instances for a specific service. Every instance advertises its
availability status to the registry in both its startup and shutdown phases. In this way requests can be
directed only to available instances and a graceful service shutdown is made possible: the terminating
microservice will not get additional requests and can wait until all the current ones return their result
to the caller before actually stopping.

The service registry maps services to their endpoints, and it can be used either through client-side or
server-side discovery. In the first case it is the client (directly or through some utility layer) which
accesses the registry to discover the location of any needed service. In the second case there is a router
or proxy component between the client and the service: the client always invokes the same proxy
endpoint for a given service, and the proxy takes care of accessing the registry and redirecting the
request to an active microservice, possibly load-balancing it.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 43 of 77

www.decide-h2020.eu

A further step towards business continuity-friendly redeployments is the technique commonly called
“Blue-green deployment” [14]. The idea is to keep both the old and new deployments running at the
same time and use the proxy / router component in front of them to switch from the old to the new
one. This allows to deploy the new release in production in a “hidden” environment, test it, and switch
it online when all is ready and running. After switching all client requests are redirected to the new
release and at the same time the old one becomes hidden and is ready to be stopped and undeployed.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 44 of 77

www.decide-h2020.eu

4 DECIDE ADAPT Architecture

A good high level description of DECIDE ADAPT is the following (see requirement WP4-REQ45). DECIDE
ADAPT is a tool that allows the (semi-) automatic adaptation of the application and re-deployment in
another multi-cloud configuration when certain conditions are not met. These conditions are on one
hand the violations of the application’s own multi-cloud SLA (MCSLA) and on the other hand, the non-
fulfilment of the NFP of the CSPs where the application is deployed.

These conditions will trigger an alert and will cause the OPTIMUS tool to be launched again in order to
search for another deployment configuration. Depending on the technological complexity requirement,
and the initially prioritized requirements by the user, the application will be re-adapted automatically
or an alert to the operator will be launched along with a diagnosis of what malfunctioned so that a new
optimal configuration can be found.

A logical view of DECIDE ADAPT architecture is shown in the following Figure 6.

Figure 6. DECIDE ADAPT logical architecture

The main components of DECIDE ADAPT are the following.

Deployment Orchestrator. The Deployment Orchestrator is in charge of orchestrating the deployment
lifecycle (deployment, undeployment, user confirmation, redeployment) for user applications and
their components. More details on the Deployment Orchestrator can be found in deliverable D4.4.

Monitoring Manager. The Monitoring Manager controls the monitoring functionality for the
application, according to its defined (Multi-Cloud) SLA, and identifies and raises any related violations,

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 45 of 77

www.decide-h2020.eu

including those for the CSPs where the application is deployed on. More details on the Monitoring
Manager can be found in deliverable D4.7.

Violations Handler. The Violations Handler will handle any violation raised by the Monitoring Manager,
either regarding the application MCSLA or the CSPs’ NFRs. Violation handling may lead both to alerting
the operator and to contacting OPTIMUS to trigger a new re-deployment simulation for the
application., thus starting a readaptation process.

Service registry / Service proxy. The Service registry and proxy are components, usuallly part of the
application iself, which enable to maintain microservices communication even in case of migration
(they may also handle load balancing). ADAPT can optionally provide them as implementations of the
respective patterns.

Helpers. The Helpers are ADAPT modules planned for implementing the low level logics for the
deployment steps, the retrieval of monitoring data, the actions for adapting applications and
implementing what is required for interfacing different cloud platforms. In the first version of ADAPT
the Helpers support the Deployment Orchestrator in interfacing with ACSmI. More details can be found
in deliverable D4.10.

The main input information for all ADAPT functionalities is the Application Description document, and
the main interfaces of ADAPT are with OPTIMUS, ACSmI and the ADAPT GUI.

4.1 Deployment components

The DECIDE ADAPT deployment components get as input the Application Desctiption and are in charge
of deploying and undeploying the application and its components on the indicated cloud providers.
Infrastructure resources from the cloud providers are obtained and released through ACSmI.

Application adaptation to cope with SLA violations is obtained by redeploying the application according
to the new configuration calculated by OPTIMUS.

After some discussion among the DECIDE partners, it has been decided to move the deployment script
generation functionality from the Application Controller to ADAPT itself, since the scripts are closely
dependent on the technology selected for the ADAPT implementation. This allows to keep low level
information about resources in a single place and to handle in a single component the whole
deployment flow from user confirmation to resource provisioning to the actual deployment.

The ADAPT Deployment Orchestrator is composed by the following components.

Figure 7. ADAPT Deployment Orchestrator components

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 46 of 77

www.decide-h2020.eu

ADAPT DO REST API. This is the main component of the ADAPT Deeployment Orchestrator. It
orchestrates the needed deployment steps, manages the generation of the deployment plan, manages
the plugins of the ADAPT DO Execution Engine and activates it, asks for confirmation if needed,
archives the deployment state.

ADAPT DO Preparation Engine. This component, based on the information inluded in the Application
Description, generates all the needed deployment plans and scripts to be executed by the ADAPT DO
Execution Engine.

Deployment plan Initializer. The initializer is part of the ADAPT DO Execution Engine; it creates an
initial deployment state for each environment and also verifies the availability of the required plugins

Deployment plan Verifier. The Verifier is part of the ADAPT DO Execution Engine and is needed to
check the generated deployment plan before executing it.

Deployment plan Executor. The Executor is the main part of the ADAPT DO Execution Engine. It
executes the generated deployment plan and activates the needed plugins depending on what is
specified in the plan. A deployment plan defines the infrastructure resources needed for deployment
along with their expected configuration and any command script to bootstrap them.

ACSmI provider plugin. The ACSmI plugin allows to use ACSmI as a service provider for provisioning
the infrastructure resources defined in the deployment plan. This plugin can be considered a Helper
since it allows to interface the underlying cloud platforms.

Monitoring Manager plugin. This plugin allows the Deployment Executor to interact with the ADAPT
Monitoring Manager for starting / stopping monitoring of the deployed application.

GUI plugin. This plugin allows the Deployment Executor to interact with the operator, mainly for
confirming the deployment of high technology risk applications.

4.2 Monitoring components

The DECIDE ADAPT monitoring components monitor the deployed multi-cloud based application and
verify that the non-funtional requirements and the SLOs are being fullfilled. If a violation of any of the
NFRs or SLOs is detected, ADAPT monitoring components will inform the violation handlers component
which will generate the proper actions depending on each situation and context. If the violation occurs,
an information message saying that the working conditions are not met will be sent to the operator. If
the application is low technology risk, the “adaptation” process will be launched, through the violation
handlers component.

The main functionalities of the ADAPT monitoring components are:

• Collect data from the deployed multi-cloud application and the underlying cloud resources:
The ADAPT monitoring component needs to get the data from the deployed components and
their NFRs as well as from the underlying cloud services to collect data from their service level
metrics at real time. The data related to the cloud services will be collected from ACSmI.

• Store the data collected from the deployed multi-cloud application and the underlying cloud
resources: To assess the required working conditions of the multi-cloud application ADAPT
monitoring will deal with data at real time. These time series will be stored for further analysis
of the data.

• Create the aggregated data to be assessed: from the raw metrics, the ADAPT monitoring
component will need to create aggregated data for assessing the violations.

• Visualize the measurements: DECIDE ADAPT monitoring will provide the user with an interface
to visualize the monitored data, from the multi-cloud application and from the underlying

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 47 of 77

www.decide-h2020.eu

cloud services. DECIDE ADAPT monitoring will also provide monitoring information of the
violation occurred.

• Detect when a violation occurs: DECIDE ADAPT will detect violations on the working conditions
(NFRs/SLOs), send the corresponding alert to the operator and launch the “adaptation”
process. The adaptation process launched will include the actions related to stop the
monitoring of the previous components and resources. Monitoring of the resources will not
be stopped until the resources are undeployed.

These functionalities will be covered by the following sub-components inside ADAPT monitoring:

• ADAPT M manager: This sub-component is in charge of managing the different processes and
requests that need to be triggered in each of the other sub-components of the ADAPT
monitoring. ADAPT M manager, will launch the following processes:

o Start monitoring
o Stop monitoring
o Monitor application’s MCSLA
o Monitor CSPs violations
o Raise violations

• ADAPT M Data collection: This sub-component will collect the data from different sources. On
one hand, it will collect data from the resources where the different micro services are
deployed (through ACSmI monitoring). On the other hand, it will collect data from the
microservices themselves. The Data collection sub-component will be based on agents
deployed withtin the different components and cloud resources. The agents will be pre-
defined and pre-implemented to be installed when deploying the multi-cloud application. The
DAPT M Data collection sub-component will receive the requests from the ADAPT deployment
orchestrator, both for starting and stopping the monitoring of a multi-cloud application.

• ADAPT M Data storage and aggregation: This sub-component will be in charge of storing the
data collected from the ADAPT M Data collection and agreggating it to create the actual
measures that will be assessed by the ADAPT M violation detection.

• ADAPT M violation detection: This component will be in charge of assessing that the required
working conditions are or are not being met. The ADAPT M violation detection will need to get
the SLOs for the different metrics from the MCSLA editor /App description.

• ADAPT M UI: This is the graphical user interface for the ADAPT monitoring component. It will
provide the means for the operator of the multi-cloud application to visualize the metrics in
run time and the information form the violations ocurred.

Figure 8. Initial mockups for the ADAPT M UI

In the following Figure 9, the component diagram of the ADAPT Monitoring component is shown.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 48 of 77

www.decide-h2020.eu

Figure 9. ADAPT monitoring internal component diagram

ADAPT monitoring will gather information from the the MCSLA editor/ App description (the threshold
values for the different metrics to be assessed,) , from the Violation Handlers (information about the
alerts), and form ACSmI (information about the metrics coming from the CSPs).

ADAPT monitoring will provide information to the Violation Handlers about any violation occurred.

 ADAPT monitoring will receive requests from ADAPT deployment (through ADAPT deployment
orchestrator) to start/stop the monitoring.

In the following Figure 10 these communications are shown:

Figure 10. ADAPT monitoring external component diagram

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 49 of 77

www.decide-h2020.eu

4.3 Violation Handlers

The Violation Handlers are in charge of notifying the operator in case a violation occurs, triggering

the redeployment process whenever it is necessary and storing the history of violations.

When a violation takes place, it is detected by the Monitoring components, which will send a message

to the Violation Handlers that includes the parameter that was violated. Then, depending on the

application’s technological risk, the following actions will take place:

• Low technological risk: the operator will be notified and OPTIMUS will be triggered. Then,

according to the results of the simulation, the application will be automatically redeployed by

ADAPT .

• High technological risk: the operator will be notified and OPTIMUS triggered as well, but the

operator will have the chance to modify the simulation parameters before it takes place, and

the redeployment will not occur without the operator’s confirmation.

The following Figure 11 shows the component diagram of the Violation Handler:

Figure 11. ADAPT Violation Handlers component diagram

The Decision system receives the violation and requests the Application Description for the
application’s technological risk. Depending on this variable, it will instruct the Action manager to
perform the corresponding actions:

• It will instruct the Notifications Manager to notify the operator. The notification will be done
through an email that will contain information regarding the alert

• It will send a message to OPTIMUS, containing the necessary data to start a new simulation
process

The Action Manager will also store the received alert in the database (ADAPT M data storage and
aggregation) to keep a history of alerts and to visualize them from ADAPT’s UI.

Figure 12 shows these communications:

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 50 of 77

www.decide-h2020.eu

Figure 12. ADAPT Violation Handler communications diagram

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 51 of 77

www.decide-h2020.eu

5 DECIDE ADAPT Interfaces

DECIDE ADAPT integration points have already been identified and listed in Deliverable D2.1. This
section adds more details about the information expected to be exchanged in the main integration
points.

5.1 Application Description

The Application Description (see Appendix)is the main source of information for the execution of
ADAPT functionalities, both deployment- and monitoring-related.

The Application Description will be a JSON document versioned and hosted in a Git repository, this
repository will act as the main orchestration repository for the DECIDE application. The whole text of
an Application Description (or a reference to a specific Git version of it) will be passed as a parameter
to the call triggering ADAPT deployment functionality.

The Application Description definition has evolved since the first data model shown in the DECIDE
deliverable D2.1, and it is still evolving in parallel with the design and implementation iterations. Its
main fields are the following.

• microservices: list and detailed description of application’s microservices

• app_mcsla: the application’s MCSLA

• containers: list and detailed description of application’s containers

• virtual_machines: list and detailed description of the virtual machines on which the application
should be deployed

The information contained in the Application Description is provided by the tools preceding ADAPT in
the DECIDE workflow (see section 3.1).

The current detailed definition of the Application Description is provided in the Appendix to this
deliverable.

5.2 Exported interfaces

This section lists interfaces implemented by ADAPT components and used by other DECIDE tools or by
ADAPT itself. The following definitions will be detailed and possibly updated during the integration
work expected in Y2 after the first implementation.

iDeploy

This interface allows requesting the ADAPT Deployment Orchestrator component to start the
deployment process of the user application described by the given Application Description.

iStart/stop monitoring

Interface iDeploy {

+ deploy(appdescription uri): void
}

Interface iStart/stop monitoring {

+ startmonitoring(appdescription uri): void
+ stopmonitoring(appdescription uri): void

}

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 52 of 77

www.decide-h2020.eu

This interface will provide the means for requesting the ADAPT monitoring component to start/finish
a specific monitoring process from the ADAPT deployment orchestrator.

This interface contains some operations:

• The startmonitoring method starts the monitoring of a certain multi-cloud application.

• The stopmonitoring method stops the monitoring of a certain multi-cloud application.

iViolation information

This interface will be consumed by the Violation Handler and provided by ADAPT monitoring.

This interface will serve to inform the Violations Handler component that a violation has occurred.
Along with it, information about the violation itself will be also provided (type, metric monitored, etc)
so that the Violations Handler can derive the corresponsing action.

The provide violation () method provides the information of a violations that has occurred.

Alert information

This interface will be consumed by the Violation Handlers and implemented by ADAPT monitoring.

It serves the purpose of providing the ADAPT monitoring components with the alert details, to be
visualized by ADAPT M data storage and aggregation module.

The method provideAlert() returns the information about the alert to be displayed.

5.3 Consumed interfaces

This section lists interfaces expected to be implemented by other DECIDE components. The following
definitions will be detailed and possibly updated during the integration work expected in Y2 after the
first implementation.

iCSP metrics collection

This interface will be implemented by ACSmI and consumed by ADAPT monitoring. The main objective
of this interface is to collect the metrics from the CSP where the different components of the multi-
cloud application are deployed.

The providesMetric () method gets a list of actual measurements collected from the CSPs for the
metrics specified.

iSLO gathering

Interface iViolation information {

+ provide violation(): violation type, component affected, violation ocurred

}

Interface iAlert information {

+ provideAlert(): component, violation ocurred, technological risk, suggested action

}

Interface iCSP metrics collection{
+ providesMetric(cloudservice id, metric1, metric2,…, metric n): List <measurements>

}

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 53 of 77

www.decide-h2020.eu

This interface will collect the SLOs values from the MCSLA editor or directly from the Application
Description. This information will be used by the ADAPT monitoring component to compare the actual
metrics with the SLOs of the metrics.

The provide SLOs () method provides a list of the corresponding agreed SLOs for a multi-cloud
application.

iObtainRelease resources

This interface will be implemented by ACSmI and consumed by ADAPT deployment. The main objective
of this interface is to receive request for obtaining resources or releasing resources in the ACSmI.

The Obtainresources () method Obtains the resources from the the App Description to deploy the
component.

The Releaseresources () method releases the requested resources (from the information in the App
Description) when a violation of the working conditions occurs.

iTrigger deployment simulation

This interface is implemented by OPTIMUS and consumed by the Violation Handlers.

It allows the Violation Handlers to instruct OPTIMUS to carry out a new simulation automatically, in

case of a violation in a low technological level application.

The method triggerSimulation() provides OPTIMUS with the necessary variables to trigger a new
simulation.

Interface iSLO gathering {

+ provide SLOs(appdescription uri): List <SLOs>

}

Interface iObtainRelease resources {

+ Obtainresources(appdescription uri): List <Obtainedresources >
+ Releaseresources (appdescription uri): List <Releasedresources >

}

}

Interface iTrigger deployment simulation {

+ triggerSimulation(adddescription uri): void

}

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 54 of 77

www.decide-h2020.eu

6 Candidate implementation technologies

This section introduces some existing technologies that have been identified as reusable starting points
for the implementation of ADAPT.

6.1 Terraform

Terraform [15] is a model-based open source tool created by HashiCorp that allows to create or update
IT infrastructure resources and prepare them for use by applications. Terraform implements the
"Infrastructure as Code" paradigm which is at the base of the DevOps approach (see DECIDE D2.1 [2],
appendix A2). The Community version of Terraform is licensed under the Mozilla Public License 2.0;
two Enterprise versions (Pro and Premium) are also available with additional features and support.

A Terraform Plan document is the model or "code" that allows to define the IT resources that should
compose the required infrastructure. The automation of IT resources creation and configuration based
on a plan makes this process more reliable and repeatable.

The Terraform plan describes the final desired state of the required infrastructure resources. Applying
the plan results in transitioning from the current state to the defined target state. Applying twice the
same plan, assuming the first application is successful, is an idempotent operation.

Terraform automatically archives the deployment state, and this storage can be externalized, using
backends5; for example Consul can be configured as a Terraform backend.

Resources defined in the plan may depend on one another, either implicitly or explicitely; Terraform,
when applying a plan, sequentially follows dependencies to create and configure resources, but
operates in parallel on resources without dependencies.

Terraform accesses provider resources through plugins, in this way multiple resource providers, even
with different APIs, can be used to define and create complex infrastructures.

Terraform will be used by ADAPT as its ADAPT DO Execution Engine component (see section 4.1). In
particular the Verifyer corresponds to the terraform plan command and the Executor to the

terraform apply command.

An ADAPT deployment plan will be implemented as a (set of) Terraform configuration file(s), which is
a text file ending in .tf. The ADAPT DO Preparation Engine component will be able to generate

Terraform configuration files starting from information in the Application Description.

6.2 Consul

Consul [16] from HashiCorp is an open source tool to simplify the connection and configuration of
software components. It includes functionalities such as service discovery, health checking and key-
value store. The Community version of Consul is licensed under the Mozilla Public License 2.0; two
Enterprise versions (Pro and Premium) are also available with additional features and support.

ADAPT will use Consul to provide the optional Service Registry functionality for applications. The health
check functionality of Consul avoids routing requests to unhealthy services and could also be used for
monitoring the status of deployed (micro)services. Consul key-value store functionality can be used by
applications to store their configuration and also by the ADAPT to remotely store the deployment state
(supports state locking during writing to avoid corruption).

5 See https://www.terraform.io/docs/backends/index.html

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 55 of 77

www.decide-h2020.eu

6.3 Traefik

Traefik [17] is an open source HTTP reverse proxy and load balancer, specifically built for microservices.
Traefik handles its configuration dynamically and automatically: it connects to a service registry API to
know when microservices are added, relocated, or removed, and automatically generates / updates
its configuration. Traefik is licensed under the MIT License. Commercial support is also available from
Containous.

ADAPT will use Traefik to provide the optional Service Proxy functionality for applications. It could also
be used as a load balancer in production settings with multiple ADAPT instances.

6.4 Nagios

Nagios is a monitoring platform developed by Nagios Enterprises6 . Nagios solution has two versions
Nagios Core and Nagios XI. Nagios Core is a free open source solution (GNU-General Public License)
that can be obtained and used freely. Nagios XI is a commercial product with a yearly cost that can go
from 1500 to 6000 dollars depending on the version and the number of nodes7. The differences
between the two versions are explained in the Nagios site8.

For the purpose of the project we will keep with the evaluation of Nagios Core, in order to improve
the usage and reuse of the resulting platform and outcomes for evaluation purposes. Later on the
evaluating partners may decide to continue with commercial support based on their needs.

Nagios is the “de facto standard” of monitoring in the industry. It is the oldest one, and it is the one
that shows more relevance if we look at google trends. It is the monitoring technology that every
monitoring alternative compares with.

Figure 13. Interest of the different monitoring tools, Nagios, Grafana, Telegraf, Influxdb.

6 https://www.nagios.org/
7 https://assets.nagios.com/handouts/nagiosxi/Nagios-XI-Pricing-Documentation.pdf
8 https://www.nagios.org/downloads/nagios-core/

http://www.decide-h2020.eu/
https://www.nagios.org/
https://assets.nagios.com/handouts/nagiosxi/Nagios-XI-Pricing-Documentation.pdf
https://www.nagios.org/downloads/nagios-core/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 56 of 77

www.decide-h2020.eu

Figure 14. Interest of the different monitoring tools, Nagios, ganglia

Focusing on the typical features covered by the monitoring platform and arranging them in a
“monitoring stack” we can see that Nagios Core covers: checks, Storage, Aggregation, View and
alerting.

Figure 15. Nagios monitoring stack coverage

The usage of this technology can be applied to the monitoring of the components or cloud resources
managed by ADAPT.

6.5 Telegraf, Influx DB, Grafana

Telgraf, Influxdb and Grafana are different monitoring technologies that can be combined to build a
monitoring platform. Telegraf and influxDB are developed by InfluxData, Inc9. While grafana is

9 https://www.influxdata.com/

http://www.decide-h2020.eu/
https://www.influxdata.com/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 57 of 77

www.decide-h2020.eu

developed by grafana labs10. Telegraf and influxDB are provided as open source (MIT license)11
covering the basic funtionality, but additionally influxData offers a commercial offer for covering
additional enterprise needs. The difference between the open source and the commercial offers are
explained in influxData site12. The pricing of the commercial version can go from 2000 to 33000 dollars
depending on the needs13. Grafana is also provided as open source (Apache license)14 covering the
basic functionality, but additionally grafana labs provide a hosted grafana service managed by them.
The hosted grafana cost varies from 250 to 7700 dollars depending on the number of servers15.

For the purpose of the project we will keep with the basic features of telegraf, influxdb and grafana, in
order to improve the usage and reuse of the resulting platform and outcomes for evaluation purposes.
Later on the evaluating companies may decide to continue with commercial support based on their
needs.

Telegraf and influxDB are also shipped together with other two products of influxData: chronograf and
Kapacitor. This configuration is known as TICK. In our case, we will replace the graphical representation
(chronograf) and the alerting (Kapacitor) by grafana, which is also very common in the state of the
practice. The selection of grafana over chronograf and kapacitor is based on our preferences with
respect to the graphical representation of the measures. Therefore we will use telegraf to gather the
metrics, influxDB to gather and aggregate them, and grafana to represent and alert.

Figure 16. The monitoring stack: Telegraf,Iinfluxdb and Grafana.

Telegraf, influxdb and grafana are more at the edge of the state of the art. They apply latest
technologies for lightweight metrics gathering, data series storage and graphical user interfaces. Many
examples of graphical user interface configuration may be found in grafana site.

10 https://grafana.com/
11 https://en.wikipedia.org/wiki/MIT_License
12 https://www.influxdata.com/products/editions/
13 https://www.influxdata.com/influxcloud-pricing/
14 https://www.apache.org/licenses/LICENSE-2.0
15 https://grafana.com/cloud/metrics

http://www.decide-h2020.eu/
https://grafana.com/
https://en.wikipedia.org/wiki/MIT_License
https://www.influxdata.com/products/editions/
https://www.influxdata.com/influxcloud-pricing/
https://www.apache.org/licenses/LICENSE-2.0
https://grafana.com/cloud/metrics

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 58 of 77

www.decide-h2020.eu

Figure 17. Grafana graphical interface16.

Focusing on the typical features covered by the monitoring platform and arranging them in a
“monitoring stack” we can see that Telegraf, influxdb and grafana together covers: checks, Storage,
Aggregation, View and alerting.

Figure 18. Telegraf+InfluxDB+Grafana monitoring stack coverage.

The usage of this technology can be applied to the monitoring of the components or cloud resources
managed by ADAPT.

16 https://grafana.com/dashboards

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 59 of 77

www.decide-h2020.eu

6.6 Ganglia

Ganglia is a monitoring tool for high-performance computing systems. Ganglia is an Open Source
project17.

Ganglia provides a complete, real-time monitoring and execution environment based on a hierarchical
design. It uses a multicast listen/announce protocol to monitor node status, and uses a tree of point-
to-point connections to coordinate clusters of clusters and aggregate their state information. Ganglia
uses the eXtensible Markup Language (XML) to represent data, eXternal Data Representation (XDR)
for compact binary data transfers, and an open source package called RRDTool for data storage (in
Round Robin databases) and for graphical visualization.

It runs on Linux, Solaris, FreeBSD, AIX, IRIX, Tru64, HPUX, Mac OS X and Windows (using cygwin).
Ganglia’s in use on more than 500 clusters around the world. Moreover, PlanetLab has used Ganglia
to monitor clusters at over 100 sites in half a dozen countries on a single Linux box.

The Ganglia Monitoring Core consists of the monitoring daemon,”gmond”, which runs on every node;
the meta daemon, “gmetad”, which runs on a central machine, and collects and stores state
information; a command-line status client called “gstat” which connects to a monitoring daemon and
outputs a load-balanced list of cluster nodes; and a command-line tool called ”gmetric” that defines
new metrics for the monitoring daemons to track.

Figure 19. Ganglia architecture18

In addition, a command-line tool called ”gexec” is available. It is useful for starting parallel or
distributed jobs on a cluster or on the computational grid. A web front-end for displaying real-time
statistics and graphics from the meta daemon is also available. Finally, a Python class is available for
sorting and classifying large clusters using the monitoring core.

17 available on SourceForge at http://ganglia.sourceforge.net) with a BSD license. It grew out of the University of
California, Berkeley, Millennium Cluster Project (seehttp://www.millennium.berkeley.edu)
18 From: https://www.slideshare.net/sudhirpg/ganglia-monitoring-tool (slide 5)

http://www.decide-h2020.eu/
http://ganglia.sourceforge.net/
http://www.millennium.berkeley.edu/
https://www.slideshare.net/sudhirpg/ganglia-monitoring-tool

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 60 of 77

www.decide-h2020.eu

• Ganglia Monitoring Daemon (gmond) is a daemon which needs to sit on every single node
which needs to be monitored, gather monitoring statistics, send as well as receive the stats to
and from within the same multicast or unicast channel

o If it is a sender (mute=no), it will collect basic metrics such as System Load (load_one),
CPU Utilization. It can also send user defined metrics through addition of C/Python
modules.

o If it is a receiver (deaf=no), it will aggregate all metrics sent to it from other hosts. It
will keep an in memory cache of all metrics

• Ganglia Meta Daemon (gmetad) is a daemon that polls gmonds periodically and stores their
metrics into a storage engine like RRD. It can poll multiple clusters and aggregate the metrics.
It is also used by the web frontend in generating the UI.

• Ganglia PHP Web Front-end. It should sit on the same machine as gmetad as it needs access
to the RRD files. The Ganglia web front-end provides a view of collected data through real-
time dynamic web pages. It provides up to three levels of data displays: one for the grid (or
multi-cluster view), one for each cluster (physical view), and one for each host or node.
Utilization data can be viewed over the past hour, day, week, month, or year. This makes it
easy for both system administrators and grid/cluster users to quickly see the status of the
resources and their trends through time.
All the information and graphics are generated on-the-fly by parsing a complete Ganglia XML
tree — obtained by contacting the local gmetad — for every page accessed. Therefore, the
front-end should run on a fairly powerful computer; if a large grid is monitored this way, a
dedicated server may be best. The web front-end is written in the PHP scripting language, and
it works well under the Apache web server with the PHP 4.1 module.

By default gmond communicates on UDP port 8649 (specified in udp_send_channel and
udp_recv_channel) and gmetad downloads metrics data over TCP port 8649 (specified as
tcp_accept_channel). Any rules that block traffic on those ports will avoid metrics to show up. The
firewall has to be open also for HTTP connections coming from the Ganglia server to the nodes of the
monitored system. This is due to the monitoring system Ganglia provides that, as it is explained in
short, is based on HTTP connections.

Every node in the system is monitored through the web-console. Apart from the default parameters
that are monitored (usage of CPU, memory, disk, input/output streams…); the operator can define his
own monitoring functions. This is done through a default functionality, which allows defining
standardized queries (HTTP, FTP, IMAP, MySQL, etc.) to IPs or URLs.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 61 of 77

www.decide-h2020.eu

Figure 20. A cluster monitoring using Ganglia19

Figure 21. Ganglia monitoring stack coverage

19 http://eigenjoy.com/2009/07/08/easily-setup-a-monitored-hadoop-hive-cluster-in-ec2-with-poolparty/

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 62 of 77

www.decide-h2020.eu

The usage of this technology can be applied to the monitoring of the components or cloud resources
managed by ADAPT.

7 ADAPT deployment alternatives

Several possible answers exist to the research question “How to deploy the deployment tool?”. Some
of those answers have been analyzed in the first year of the DECIDE project, both in the context of
normal WP4 activities and during General Technical Meetings.

A final implementation decision has not yet been reached as related experiments are still ongoing; a
decision will be taken by month 24 of the DECIDE project (M24). This section summarizes some of the
options discussed so far.

7.1 The basic idea: containerized microservices

The initial idea for ADAPT implementation is to follow the same approach proposed by DECIDE to the
developers for their multi-cloud applications: containerized microservices.

The ADAPT Deployment Orchestrator will be implemented as a microservice providing the iDeploy
interface (see section 4.1) and deployed as a Docker container. A separate microservice/container will
host the deployment state storage system.

Also the Monitoring Manager can be implemented with a central containerized microservice collecting
data from agents tied to application’s components. The monitoring agents will be either already
present in eachcomponent’s container image or installed as part of the deployment. The monitoring
DB will be deployed as a separated microservice/container.

More details about the implemented ADAPT microservices can be found in deliverables D4.4 (for
deployment) and D4.7 (for monitoring).

7.2 One ADAPT for each application

The set of microservices explained in the previous section are the constituents of ADAPT, but how
those microservices will be deployed with respect to each application? The current idea is to have one
instance of ADAPT for each application.

ADAPT can be the last ring in the chain of the application’s Continuous Integration pipeline: the DevOps
environment builds the application’s microservices and then ADAPT is activated to deploy them. The
monitoring components of ADAPT are deployed along with the application and are dedicated to keep
its QoS under control. When the application is redeployed to cope with violations the monitoring
components can be redeployed as well, but their monitoring history is maintained.

This kind of deployment will be the first to be tested and analyzed; results of this analysis will be
reported in the next WP4 deliverables.

7.3 ADAPT as a Service

Another possibility to be analyzed is to deploy ADAPT as a service. Other DECIDE components, for
example ACSmI, could be deployed as services: maybe the whole DECIDE environment could be
offered in this way. In the case of ADAPT customers might pay for a service which deploys their
application on multiple clouds, continuously monitors it and is able to adapt it to possibly changing
external conditions.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 63 of 77

www.decide-h2020.eu

A more detailed business analysis of this kind of scenario has been performed in DECIDE WP7.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 64 of 77

www.decide-h2020.eu

8 Conclusions

This deliverable has described ADAPT’s high-level architecture, as well as candidate technologies that
have been investigated for its implementation. The requirements gathered amongst partners have
been used to elicit a series of high-level functionalities. These functionalities have been grouped,
resulting in three main blocks that compose ADAPT’s architecture: deployment component,
monitoring component and violation handler.

The deployment component takes care of tasks strictly related to deploying the application into cloud
providers, the monitoring component monitors application metrics to make sure that they fulfill their
SLAs and generate alerts if they do not, and the violation handler processes these alerts and triggers
the corresponding actions.

The information exchanges have also been analyzed to define interfaces for each component, and the
interactions with other tools of the DECIDE framework.

Furthermore, different technologies have been explored to be used as a starting point for some of the
components, identifying some interesting options such as Telegraf, Influx and Grafana for the
monitoring part of ADAPT.

Lastly, the document analyzes deployment possibilities for ADAPT. In general it has been considered
to deploy ADAPT as a series of microservices, following the philosophy of the project, but specific
options, such as using one ADAPT for each application or deploying ADAPT as a service have also been
identified, although a final decision has yet to be reached. Analysis of the various deployment
alternatives will be one of the major topics of next year’s work for WP4, along with integration and
improvement of the developed components.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 2.0 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 65 of 77

www.decide-h2020.eu

References

[1] DECIDE-WP4-Partners, “DECIDE WP4 Requirements,” [Online]. Available:
https://docs.google.com/spreadsheets/d/1ZopEEXmxXe_Rqr5xnZihh5bBjprXKJju0iwsAkfX1UE
/edit#gid=0. [Accessed 27 July 2017].

[2] DECIDE, "Deliverable D2.1 - Detailed Requirements Specification," 2017.

[3] Pivotal, “Cloud-Native Apps,” [Online]. Available: https://pivotal.io/cloud-native. [Accessed 09
2017].

[4] Google, “GitHub for Protobuf,” [Online]. Available: https://github.com/google/protobuf/.
[Accessed 09 2017].

[5] SmartBear.com, “Understanding SOAP and REST Basics and Differences,” [Online]. Available:
https://blog.smartbear.com/apis/understanding-soap-and-rest-
basics/?_ga=2.92057180.770716268.1504774943-915349788.1504774943. [Accessed 09
2017].

[6] L. Mergen, “www.leonmergen.com,” [Online]. Available: https://leonmergen.com/on-
stateless-software-design-what-is-state-72b45b023ba2. [Accessed 09 2017].

[7] J. C. Mitchel, in Concepts in Programming Languages, Cambridge University Press, 2002, p. 78.

[8] Fasthosts, 1&1, “Why containers? Development through the ages,” in TEC Day 2017,
Gloucester, 2017.

[9] docker, “Swarm mode key concepts,” [Online]. Available:
https://docs.docker.com/engine/swarm/key-concepts/. [Accessed 09 2017].

[10] kubernetes, “kubernetes,” [Online]. Available: https://kubernetes.io/. [Accessed 09 2017].

[11] Red Hat, “OpenShift,” [Online]. Available: https://www.openshift.com/. [Accessed 09 2017].

[12] Docker, “The Docker Way,” [Online]. Available: https://github.com/cozy/cozy-setup/wiki/2.4.-
The-Docker-Way. [Accessed 09 2017].

[13] kubernetes, “Federation,” [Online]. Available: https://kubernetes.io/docs/concepts/cluster-
administration/federation/. [Accessed 09 2017].

[14] M. Fowler, "BlueGreenDeployment," [Online]. Available:
https://martinfowler.com/bliki/BlueGreenDeployment.html.

[15] HashiCorp, "Terraform home page," [Online]. Available: https://www.terraform.io/. [Accessed
September 2017].

[16] HashiCorp, "Consul home page," [Online]. Available: https://www.consul.io/. [Accessed
September 2017].

[17] Containous, "Traefik home page," [Online]. Available: https://traefik.io/. [Accessed September
2017].

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 66 of 77

www.decide-h2020.eu

APPENDIX: Application Description

The following table describes the current version of the Application Description for both deployment and monitoring, resulting from Partners’ research and
discussions, with a brief description for each field. The same Application Description definition can be found in DECIDE deliverable D2.4; here the column Used
By indicates if the field is needed by the ADAPT Deployment (DEP) or ADAPT Monitoring (MON). Please note that the Application Description definition has
evolved since the first data model shown in the DECIDE deliverable D2.1, and it’s still evolving in parallel with the design and implementation iterations.

Table 9. Application Description model for deployment

Field name Nested Elements Nested
Elements

Type Multiplicity/
Default

Description Responsible
component

Used
By

id

 String 1 Unique identifier for the Application Description Creation
Wizard

name

 String 1 Name of the application Creation
Wizard

DEP

description String 1 Textual description of the application

highTechnologi
calRisk

 Boolean 1 Indicates if the application has high
technological risk: confirmation for
(re)deployment is needed

 DEP

version String 1 Indicates the version number of the app
description "schema", for compatibility purposes

microservices

 Array of
Objects

1..* List of microservices Creation
Wizard

id String 1 Unique Identifier for the microservice Creation

Wizard

repo String 1 Reference to location of microservice repo Creation

Wizard

name String 1 Human readable name for the microservice Creation

Wizard

programmingLan
guage

 String 1 Type of programming language used for
microservice (hint)

Creation
Wizard

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 67 of 77

www.decide-h2020.eu

Field name Nested Elements Nested
Elements

Type Multiplicity/
Default

Description Responsible
component

Used
By

container_ref String 1 Id or URI of container in which the microservice
is located for ADAPT to be able to deploy it

Creation
Wizard

endpoints Array of

Objects
(URI)

1..* List of URI to access the services and their
methods20

Creation
Wizard

stateful Boolean 1 Is the microservice stateful or stateless? Creation

Wizard

type String 1 The type of the microservice, is it a data

component or user interface component , etc.
Creation
Wizard

patterns Array of

Objects
0..* List of patterns applied to the microservice ARCHITECT

dependencies Array of

Strings
0..* List of microservice names the current one

depends on
Creation
Wizard

nfrs Array of

Strings
1..* List of selected NFRs per microservice NFR Editor

 publicIP Boolean 1 True if the microservice has a public IP address OPTIMUS
Classification

 infrastructure_re
quirements

 Object 1 Requirements for the infrastructure hosting the
microservice

OPTIMUS
Classification

 disk_min String 1 OPTIMUS
Classification

 disk_max String 1 OPTIMUS
Classification

 RAM_min String 1 OPTIMUS
Classification

 RAM_max String 1 OPTIMUS
Classification

app_mcsla Object 1 The MCSLA for the application (see Table 10) MCSLA Editor MON

20 Port numbers in each URI are those exposed by the microservice, the container can be configured to map them to a different port number

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 68 of 77

www.decide-h2020.eu

Field name Nested Elements Nested
Elements

Type Multiplicity/
Default

Description Responsible
component

Used
By

projectNfrs

 Array of
Strings

1..* List of selected NFRs for the application, might
apply to individual NFRs

NFR Editor

virtual_machin
es

 Array of
Objects

0..* Description of the VMs that will host the
containers

 DEP

 id 1 DEP

 csp_name String 1 Name of the CSP providing this VM OPTIMUS DEP

 csp_id String 1 Internal UUID for the CSP providing this VM OPTIMUS DEP

 RAM String 1 Amount of memory (in GB) OPTIMUS DEP

 cores Integer 1 Number of cores OPTIMUS DEP

 storage String 1 Amount of disk space (in GB) OPTIMUS DEP

 image String 1 Name of the VM image (identifies also the OS
and its version)

OPTIMUS DEP

 cloudbrokerEndp
oint

 String 1 Endpoint of the Cloudbroker (ACSmI) API, to
which all the cloud resource provisioning
requests are sent

ACSmI DEP

 cloudbrokerUser
name

 String 1 Username for the Cloudbroker API access ACSmI DEP

 cloudbrokerPass
word

 String 1 Password for the Cloudbroker API access ACSmI DEP

 vmSoftwareId String 1 Id of the software resource from the
Cloudbroker catalog dictionary. Represents the
OS and version of the VM (e.g. “Ubuntu 16.04”)

ACSmI/Optimu
s

DEP

 vmResourceId String 1 The id of the Cloudbroker VM resource, which
represents the underlying CSP that will perform
the real provisioning

ACSmI/Optimu
s

DEP

 vmRegionId String 1 The id of the “Region” where the VM will run,
taken from the Cloudbroker catalog dictionary
(E.g.: Zrh, US Standard, …)

ACSmI/Optimu
s

DEP

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 69 of 77

www.decide-h2020.eu

Field name Nested Elements Nested
Elements

Type Multiplicity/
Default

Description Responsible
component

Used
By

 instanceTypeId String 1 The id of the “instanceType” which represents
the combination of resources allocated to the
vm (e.g. “2 Total cores, 2GB RAM)

ACSmI/Optimu
s

DEP

 keyPairId String 1 The id of the keypairs needed to access
Cloudbroker resources (associated to the
Cloudbroker user profile)

 DEP

 openedPorts String 0..1 The comma separated list of ports to be open on
the VM

Developer DEP

 consulJoinIp String 1 Address of the master Consul (service registry)
node; if “self", it means that this VM will act as
master

TBD: it will be
the address of
a node
running
ADAPT

DEP

 dockerPrivateRe
gistryIp

 String 0..1 IP of a Docker private registry, which will host
custom container image prepared by a
developer that are not published to the public
Docker Hub repository

Developer DEP

 dockerPrivateRe
gistryPort

 Integer 0..1 Port of the private Docker registry Developer DEP

 dockerHostNode
Name

 String 1 Name of the Docker node (referenced by the
same field in each container definition)

Developer /
OPTIMUS

DEP

containers Array of
Objects

1..* Description of the containers that will host the
microservices

 DEP

 Id String 1 Id of the container

 containerName String 1 Name of the container Developer DEP

 imageName String 1 Name of the container image Developer DEP

 imageTag String 1 Tag to identify the container in the registry Developer DEP

 dockerPrivateRe
gistryIp

 String 0..1 IP of a Docker private registry, which will host
custom container image prepared by a

Developer DEP

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 70 of 77

www.decide-h2020.eu

Field name Nested Elements Nested
Elements

Type Multiplicity/
Default

Description Responsible
component

Used
By

developer that are not published to the public
Docker Hub repository

 dockerPrivateRe
gistryPort

 String 0..1 Port of the private Docker registry Developer DEP

 dockerPrivateRe
gistryUser

 String 0..1 Username to access the private Docker registry Developer DEP

 dockerPrivateRe
gistryPassword

 String 0..1 Password to access the private Docker registry Developer DEP

 hostname String 1 Hostname of the container Developer DEP

 restart String 1 Attribute indicating the restart policy for this
container (e.g. “always”)

Developer DEP

 command Array of
Strings

0..* Comma-separated list of commands to be
passed to the container, as for the “CMD”
Dockerfile specs

Developer DEP

 entrypoint Array of
Strings

0..* Comma-separated list of commands and
parameter to be passed to the container, as for
the “ENTRYPOINT” Dockerfile specs

Developer DEP

 DockerHostNode
Name

 String 1 Name of the VM hosting the container OPTIMUS DEP

 networks Array of
Strings

0..* This field will trigger the creation of one or more
dedicated Docker network(s) on the container to
allow two containers to see each other in case it
does not exist

Developer /
OPTIMUS

DEP

 volumeMapping Array of
Objects

0..* Mapping of volumes from host paths to
container paths

Developer DEP

 hostPath String 1 Path on the host Developer DEP

 containerPa
th

String 1 Path on the container Developer DEP

 environment Array of
Strings

0..* List of comma-separated KEY=VALUE
environment variables to be defined before

Developer DEP

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 71 of 77

www.decide-h2020.eu

Field name Nested Elements Nested
Elements

Type Multiplicity/
Default

Description Responsible
component

Used
By

starting the container, as for the “ENV”
Dockerfile specs

 consulKvProvide
rNodeName

 String 1 Name of the node hosting the Consul Key-Value
provider

(TBD: it will be
the node
running
ADAPT)

DEP

 addConsulServic
e

 Boolean
(0|1)

0..1 Specify whether to register the service to a
Consul service registry (enables basic health-
check)

(TBD: it may
be enabled by
default)

DEP

 addConsulTraefi
kRules

 Boolean(0
|1)

 Specify whether to add reverse proxy routing
rules to the Consul K/V store (based on “Host:”
header)

Developer DEP

 portMapping Array of
Objects

0..* List of ports to be published by this container Developer DEP

 hostPort String 1 Port to be exposed on the host Developer DEP

 containerPo
rt

String 1 Port exported by the container Developer DEP

 endpoints Array of
Objects

0..* List of endpoints for this container Developer DEP

 protocol String 1 Typically, “http”, but can be something else
according to URL syntax

Developer DEP

 port Integer 1 The port to which the endpoint is bound Developer DEP

 skipRule Boolean
(0|1)

0..1 Set to 1 to discard the routing rule based on
hostname (“Host:” header)

Developer DEP

 containerNa
meOverride

String 0..1 Overrides the standard routing rule based on
hostname; hence, it allows to consider a
different hostname for this service

Developer DEP

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 72 of 77

www.decide-h2020.eu

The following tables describe the Application Description model for monitoring with a brief description for each field. Table 10 describes the nested elements
for the field app_mcsla of the Application Description. The MCSLA Editor is responsible for eliciting this information from the user.

Table 10. Application Description model for monitoring the application via its MCSLA (nested elements for “app_mcsla”)

Element Name app_mcsla

Description General information about the MCSLA

attribute -or- Element Type Multiplicity / Default Definition

id String 1 Unique Identifier for the MCSLA

description String 1 This is MCSLA description line.

visibility String 1 public or private

validityPeriod Integer 1 The validity period of the MCSLA in days

microservice_SLAs Microservice_SLAs 1..* The list of SLAs for each microservice

The following Table 11 describes the fields nested in the microservice_SLAs field of the MCSLA.

Table 11. Nested elements for microservice_SLAs

Element Name Microservice_SLAs

Description The general information about the SLAs for each microservice

attribute -or- Element Type
Multiplicity /
Default

Definition

id String 1 Unique Identifier for the microservice_SLA

ms_id String 1 Unique Identifier of the microservice this SLA belongs to

csp_id String 1 Unique Identifier of the CSP from which the SLA comes from

visibility String 1 public or private

validityPeriod Integer 1 The validity period of the SLA in days, should not be higher than that of the MCSLA

microservice_SLO microservice_SLO 1..* List of microservice SLOs

microservice_SQO microservice_SQO 1..* List of microservice SQOs

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 73 of 77

www.decide-h2020.eu

The following Table 12 describes the fields nested in the microservice_SLO and microservice_SQO fields of microservice_SLAs.

Table 12. Nested elements for microservice_SLO and microservice_SQO

Element Name microservice_SLO and microservice_SQO

Description The general information about the slo or sqo defined for a microservice

attribute -or- Element Type
Multiplicity /
Default

Definition

id String 1 Unique Identifier for the microservice_SLA

termName String 1 Name of the term to which it refers to

value Integer 1
Term value that should not be violated based on calculation
formula

unit String 1 Term unit

comparisonOperator String 1 Comparison operator for monitoring the SLO

violationTriggerRule ViolationTriggerRule 1 The violation Trigger Rule

remedy Remedy 0..1

the compensation available to the cloud service customer in
the event the cloud service provider fails to meet a
specified cloud service level objective

metrics Metrics 1..* The definition of how to measure the SLO or SLA

violation_report String
0..1 Indicates where to report violations for this application

(optional)

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 74 of 77

www.decide-h2020.eu

The following Table 13 describes the fields nested in the violationTriggerRule field of microservice_SLO and microservice_SQO.

Table 13. Nested elements for ViolationTriggerRule

Element Name ViolationTriggerRule

Description The general information about the violation trigger rule

attribute -or- Element Type
Multiplicity /
Default

Definition

interval string 1 Indicates the monitoring frequency for each SLO

breaches_count Integer 1 The count of how many breaches have taken place

The following Table 14 describes the fields nested in the remedy field of microservice_SLO and microservice_SQO.

Table 14. Nested elements for Remedy

Element Name Remedy

Description
The general information about the compensation available to the cloud service customer in the event the cloud service
provider fails to meet a specified cloud service level objective

attribute -or- Element Type
Multiplicity /
Default

Definition

type String 1
The type of remedy the cloud service provider will be offering the
cloud service customer

value Integer 1 The value of the type of remedy offered by the cloud service provider

Unit String 1 The unit for the value offered

validity Integer 1 The validity period for this remedy

The following table holds the fields (taken directly from ISO 19086-2 Metric Model.) that are nested within the metrics field of microservice_SLO and
microservice_SQO. The MCSLA Editor is responsible for eliciting this information from the user.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 75 of 77

www.decide-h2020.eu

Table 15. MCSLA Metric data model for monitoring

Element Name Metric

Description The general information about the metric

attribute -or- Element Type
Multiplicity
/ Default

Definition

descriptor String 0..1 a short description of the metric

Id String 1 a unique identifier for the metric within a context

source String 1 the individual or organization who created the metric

scale enumeratedList 1 classification of the type of measurement result when using the metric. The value of scale shall
be “nominal, ordinal, interval, or ratio”. SLOs shall use either the “interval” or “ratio” scale.
SQOs shall use the “nominal” or “ordinal” scales.

note String 0..1 additional information about the metric and how to use it.

category String 0..1 a grouping of metrics with similar expressions, rules, and parameters

expression Expression 0..1 The expression of the calculation of the Metric and supporting information. An SLO metric
shall have an expression while an SQO may or may not have an expression (e.g., specified using
natural language). It shall be written using the ids to represent UnderlyingMetrics, Parameters,
and Rules.

parameters Parameter 0..* a Parameter is used to define a constant (at runtime) needed in the expression of an Metric. A
Parameter may be used by more than one Metric if it is defined using a unique ID within the
set of metrics it is used in.

rules Rule 0..* a Rule is used to constrain a Metric and indicate possible method(s) for measurement.

underlyingMetrics Metric 0..* a metric element that is used within an expression element to define a variable. The Expression
shall use the Underlying Metric id to reference the Underlying metric within the expression.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 76 of 77

www.decide-h2020.eu

The following Table 16 describes the fields nested in the expression field of a Metric.

Table 16. Nested elements for Expression

Element Name Expression

Description The expression of the calculation of the Metric and supporting information

attribute -or- Element Type
Multiplicity /
Default

Definition

Id String 1
a unique identifier (within the context of the metric) for the
expression

expression String 1
the expression statement written using the ids to represent
UnderlyingMetrics, parameters, and rules.

expressionLanguage String 1 the language used to express the metric (i.e. ISO80000)

note String 0..1 additional information about the expression

unit String

0..1
real scalar quantity, defined and adopted by convention, with
which any other quantity of the same kind can be compared to
express the ratio of the two quantities as a number.

required when scale
is ratio or interval

subExpression Expression 0..*

an associated element of type element that is used within the
expression to define a variable. The Expression shall use the
SubExpression id to reference the SubExpression within the
expression.

http://www.decide-h2020.eu/

D4.1 – Initial DECIDE ADAPT Architecture Version 1.1 – Final. Date: 28.11.2017

© DECIDE Consortium Contract No. GA 731533 Page 77 of 77

www.decide-h2020.eu

The following Table 17 describes the fields nested in the parameters field of a Metric.

Table 17. Nested elements for Parameter

Element Name Parameter

Description
A Parameter is used to define a constant (at runtime) needed in the expression of a Metric. A Parameter may be used
by more than one Metric if it is defined using a unique ID within the set of metrics it is used in.

attribute -or- Element Type
Multiplicity /
Default

Definition

id String 1 the unique identifier of the parameter

parameterStatement String 1 the statement or value of the parameter

unit String 1 the unit of the parameter

note String 0..1 additional information about the parameter

The following Table 18 describes the fields nested in the rules field of a Metric.

Table 18. Nested elements for Rule

Element Name Rule

Description

A Rule is used to constrain a Metric and indicate possible method(s) for measurement. For instance an
“AvailabilityDuringBusinessHour” Metric could be defined with a scope that constrains some piece of a generic “Availability”
Metric element that limits the measurement period to defined business hours. A Rule describes constraints on the metric
expression. A constraint can be expressed in many different formats (e.g. plain English, ISO 80000, SBVR)

attribute -or- Element Type
Multiplicity /
Default

Definition

Id String 1 the unique identifier for the rule

ruleStatement String 1 a constraint on the metric

ruleLanguage String 1 the language used to express the rule in the ruleStatement

Note String 0..1 additional information about the rule

http://www.decide-h2020.eu/

	Table of Contents
	List of Figures
	List of Tables
	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Initial ADAPT requirements
	2.1 Requirements collected from Partners
	2.2 DevOps Requirements
	2.3 Requirement Analysis
	2.4 From Cloud to Multi-cloud applications
	2.4.1 What is a Cloud Native Application
	2.4.2 Microservices Architecture
	2.4.2.1 Stateful vs Stateless Applications
	2.4.2.2 Advantages of Multi-cloud Applications
	2.4.2.3 Disadvantages of Multi-cloud Applications

	2.4.3 Containers Technology
	2.4.4 Deployment Issues

	3 High Level ADAPT Functionalities
	3.1 ADAPT in the overall DECIDE flow
	3.2 ADAPT Use Cases
	3.2.1 ADAPT Deployment Orchestrator
	3.2.2 ADAPT Monitoring Manager
	3.2.3 ADAPT Violations Handler
	3.2.4 ADAPT UI
	3.2.5 ADAPT Service Registry and Proxy
	3.2.6 External DECIDE components

	3.3 Requirements mapping
	3.3.1 Deployment requirements mapping
	3.3.2 Monitoring requirements mapping
	3.3.3 Violations Handling requirements mapping

	3.4 Improving business continuity

	4 DECIDE ADAPT Architecture
	4.1 Deployment components
	4.2 Monitoring components
	4.3 Violation Handlers

	5 DECIDE ADAPT Interfaces
	5.1 Application Description
	5.2 Exported interfaces
	5.3 Consumed interfaces

	6 Candidate implementation technologies
	6.1 Terraform
	6.2 Consul
	6.3 Traefik
	6.4 Nagios
	6.5 Telegraf, Influx DB, Grafana
	6.6 Ganglia

	7 ADAPT deployment alternatives
	7.1 The basic idea: containerized microservices
	7.2 One ADAPT for each application
	7.3 ADAPT as a Service

	8 Conclusions
	References
	APPENDIX: Application Description

