
D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 1 of 22

www.decide-h2020.eu

Deliverable D2.6

Initial DECIDE DevOps Framework Integration

Editor(s): Antonio Fernández Llamas
Javier Gavilanes Ruano

Responsible Partner: Experis IT

Status-Version: Final – v1.0

Date: 28/02/2018

Distribution level (CO, PU): CO

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 2 of 22

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable: D2.6 Initial DECIDE DevOps Framework Integration

Due Date of Delivery to the EC: 28/02/2018

Workpackage responsible for the
Deliverable:

WP2 – DECIDE requirements and DECIDE solution
integration

Editor(s): Experis IT

Contributor(s): Experis IT

Reviewer(s): Leire Orue-Echevarria (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5, WP6

Abstract: This deliverable will provide the integrated DECIDE
DevOps Framework. The initial version will be an
initial prototype with the core functionalities
implemented.

Keyword List: DevOps framework, integration, multi-cloud, microservice.

Licensing information: This component is offered under the MIT license.

The document itself is delivered as a description for the
European Commission about the released software, so it is
not public.

Disclaimer This deliverable reflects only the author’s views and views
and the Commission is not responsible for any use that may
be made of the information contained therein

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 3 of 22

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

V0.1 12/02/2018 First draft version Experis IT

V0.2 15/02/2018 Second draft Experis IT

V0.3 23/02/2018 Third draft Experis IT

V1.0 27/02/2018 Ready for submission Leire Orue-Echevarria
(TECNALIA)

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 4 of 22

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 4

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Implementation ... 9

2.1 Functional description ... 9

2.1.1 Fitting into overall DECIDE Architecture ... 12

2.2 Technical description ... 12

2.2.1 Prototype architecture .. 12

2.2.2 Components description ... 13

2.2.2.1 Spring Cloud .. 13

2.2.2.2 DevOps framework - Backend. .. 14

2.2.2.3 DevOps framework - Frontend. ... 15

2.2.3 Technical specifications ... 15

3 Delivery and usage .. 16

3.1 Package information ... 16

3.2 Installation instructions ... 19

3.3 User Manual .. 20

3.4 Licensing information .. 20

3.5 Download .. 20

4 Conclusions .. 21

References ... 22

List of Figures

FIGURE 1. DEVOPS FRAMEWORK WITHIN DECIDE .. 12
FIGURE 2. DEVOPS FRAMEWORK PROTOTYPE’S ARCHITECTURE DIAGRAM ... 13
FIGURE 3. DEVOPS FRAMEWORK GENERAL PROJECT’S FILE STRUCTURE ... 16
FIGURE 4. GATEWAY MICROSERVICE FILE STRUCTURE ... 16
FIGURE 5. ARCHITECT MICROSERVICE FILE STRUCTURE ... 17
FIGURE 6. OPTIMUS MICROSERVICE FILE STRUCTURE ... 17
FIGURE 7. APP. MANAGER MICROSERVICE FILE STRUCTURE ... 18
FIGURE 8. JENKINS MICROSERVICE FILE STRUCTURE.. 18
FIGURE 9. EUREKA REGISTRY MICROSERVICE FILE STRUCTURE .. 19

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 5 of 22

www.decide-h2020.eu

List of Tables

TABLE 1. REQUIREMENTS COVERED BY THE M15 PROTOTYPE .. 10

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 6 of 22

www.decide-h2020.eu

Terms and abbreviations

API Application Programming Interface

EC European Commission

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

KR Key Result

MCSLA Multi-cloud Service Level Agreement

MIT Massachusetts Institute of Technology

MTBF Mean Time Between Failures

MVC Model-view-controller

NFP Non-functional Properties

NFR Non-functional Requirement

RAM Random Access Memory

REST Representational State Transfer

UI User Interface

URL Uniform Resource Locator

WP Work Package

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 7 of 22

www.decide-h2020.eu

Executive Summary

This document contains the technical description of the DevOps Framework. The main purpose of the
DevOps Framework inside DECIDE project is to offer a web-based platform for the users (DevOps team
members in DECIDE), along with several other components distributed as independent modules. The
DevOps Framework will integrate all these modules, offering multiple workflows linking tools with each
other. These workflows enable to carry out tasks which involve the management of the areas related
to the development and operation, trying to explore and track the current state of a DECIDE application
by sending or receiving information from the rest of the DECIDE independent tool components. The
target users of the DECIDE DevOps framework is both developers and operators of multi-cloud native
applications.

In this document we detail the initial version of the DevOps framework, explaining its general
architecture and the enabling technologies used for the initial implementation. Moreover, we present
how the tools communicate with each other, and show the integration between some of these
modules. Finally, we will expose the deployment guidelines, so anyone can build the platform system
following the instructions provided.

Due to the high number of DECIDE components that must be integrated, in this deliverable we will
focus on explaining how we have instantiated each tool using independent microservices, as well as
the benefits obtained from the use of this technology based on the deployment of isolated containers,
analysing topics such as scalability and performance of the general implementation.

Future versions of this document will show the evolution of the DevOps framework, improving the
architecture and integrating new tools into the system that currently still are in a very infant status,
and at this stage are not fully ready to be used in our current scenario.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 8 of 22

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

This deliverable explains the architecture of the initial DECIDE DevOps framework prototype, detailing
on one hand. how it has been designed and on the other hand, the enabling technologies used for the
implementation. The content included in this document corresponds to the first version of the
platform, due in month 15.

Furthermore, this document will present an initial approach for the deployment of the DevOps
framework, that will be useful for other project team members in further releases of DECIDE project.

1.2 Document structure

The document is structured in four (4) main sections:

• At first, we will introduce the DevOps framework context with a brief introduction to the
project, explaining the objectives and structure of the document.

• After explaining the main requirements of the DevOps platform, we will go on explaining the
implementation itself, starting with a functional description of the solution, followed by a
technical description of the general architecture as well as how each module behaves itself,
enumerating several technical constraints of the project.

• Afterwards, we will present the installation guidelines and its deployment, so anyone can use
the developed framework and test it.

• To finalize the document, we will expose the conclusions of the deliverable, and some steps
that will be accomplished in future versions of the project.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 9 of 22

www.decide-h2020.eu

2 Implementation

2.1 Functional description

The DECIDE DevOps Framework is the platform from which the different Key Results will be accessed.
Its main purpose is to offer an intuitive interface to the user where they can set up a specific multi-
cloud native application and consume any of the other tools integrated in the system. The framework
will provide an entry point to DECIDE and will handle the interconnection between all the elements
involved, providing a global overview about the state of the application to the end user.

Functionalities:

The main functionalities of the DECIDE DevOps Framework can be summarized as:

1. Entry point. The framework must provide centralized access to the different tools and KRs. It
will also provide the necessary facilities for user and application management.

2. KR integration. The framework must transparently unify the graphical interfaces of the Key
Results. Besides, it will allow for the creation and edition of the Application Description, a file
that contains the parameters to configure the tools and serves as an integration point for these
tools. This file has been defined in deliverable D2.1 [1].

3. Workflow orchestration. The DevOps framework will be able to launch the different tools and
KRs and make sure that the DECIDE workflow is followed as intended.

4. Application configuration. The DevOps framework will allow users to introduce the application
information that is needed for the tools to function properly.

DECIDE DevOps framework will follow an incremental strategy, according to which different
prototypes of the framework will be released in months 15, 27 and 33. The current M15 prototype has
the following coverage of the expected functionalities:

1. Entry point. Partially covered. This prototype provides a platform with centralized access to
some of the DECIDE tools. User and application management will be addressed in a future
release.

2. KR integration. Partially covered. The prototype gives access to some of the DECIDE KRs
(ARCHITECT and OPTIMUS). However, the level of integration will be tighter in the next
releases, and there will be integration with all tools.

3. Workflow orchestration. Limited coverage. The DevOps framework provides facilities to
communicate with the different components, even though at this stage, the level of maturity
of these components is not enough to run a complete workflow.

4. Application configuration. Partially covered. The prototype will let users create and configure
a basic version of the Application Description, the file that contains the application
configuration parameters.

Requirements:

The global requirements for the DECIDE DevOps Framework have been analyzed, reviewed and
gathered in D2.1 [1]. The requirements planned for the DevOps Framework and those which have been
implemented in this prototype are described on Table 1.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 10 of 22

www.decide-h2020.eu

Table 1. Requirements covered by the M15 prototype

Req. ID Req. Description
Requirement coverage by the
prototype

KR1-REQ1
The system must provide the user
with an entry point to DECIDE.

The prototype will provide access to a
platform from which the different tools
can be utilized.

KR1-REQ2
The system must unify transparently
the UIs from the different KRs.

The prototype will provide access to
the tools, whose UI will be embedded
in the platform, following a common
set of guidelines.

KR1-REQ3
The system must provide a generic
DECIDE UI.

The prototype includes a dashboard
that unifies information from some of
the tools.

KR1-REQ4
The system must receive
ARCHITECT's patterns.

The prototype will receive
ARCHITECT’s master list of patterns.

KR1-REQ5
The developer must have access to a
development environment with the
received patterns.

Not covered.

KR1-REQ6
The developer must have access to a
development environment with
preloaded DECIDE configurations.

Not covered.

KR1-REQ7
The system must allow the developer
to submit their code.

The prototype will allow the user to
start the compilation process.

KR1-REQ8
The system must be able to version
the code submitted by the developer.

Not covered.

KR1-REQ9
The system must be able to resolve
the dependencies of the submitted
code.

Not covered.

KR1-REQ10
The system must compile the code
without errors.

The system will give the option to
compile the code.

KR1-REQ11
The system must receive the testing
activities that have to be performed
on the code.

The prototype will be integrated with a
tool able to perform quality tests on
the code.

KR1-REQ12
The system must be able to perform
the received testing activities.

The integrated quality testing tool will
perform testing activities on the code.

KR1-REQ13
The system must present the results
from the testing activities.

The prototype’s dashboard will present
the testing results.

KR1-REQ14
The system must guarantee the
continuity of the code within
DECIDE's workflow.

The code will reside in a Git repository
that is accessible by all tools.

KR1-REQ15
The system must make the code
available for DECIDE.

The prototype will provide an option to
indicate where the code is located,
making it available for all tools.

KR1-REQ16
The system must guarantee the
fulfilment of DECIDE's patterns by the
developer.

Not covered.

KR1-REQ17
DECIDE DevOps framework must
provide support for NFR gathering.

The prototype will provide a wizard
that will let the user specify the
application’s NFRs.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 11 of 22

www.decide-h2020.eu

Req. ID Req. Description
Requirement coverage by the
prototype

KR1-REQ18

The system must support developers
establishing qualitative NFP that the
application must comply with (i.e.
security, location, financial, low/high
technological risk).

The prototype will provide a wizard
that will let the user specify
application’s NFPs related to location
and technological risk.

KR1-REQ19

The system must support developers
establishing quantitative NFP that the
application must comply with (i.e.
MTBF, availability, response time, lag,
cost, throughout)).

The prototype will provide a wizard
that will let the user specify
application’s NFPs related to
availability and cost.

KR1-REQ20
The system must include a (MC)SLA
editor.

Not covered

KR1-REQ21
The system must include an
Application Controller.

The prototype will utilize an
Application Controller to update the
Application Description file.

DEVOPS-REQ1
DECIDE framework must facilitate
small and frequent updates of the
code.

The prototype will provide continuous
integration, which facilitates small and
frequent updates of the code.

DEVOPS-REQ4
DECIDE framework must use
microservices.

The prototype is build following a
microservices architecture.

DEVOPS-REQ5
DECIDE framework must support the
continuous integration of the
developed apps.

The prototype will support the
continuous integration of the code.

DEVOPS-REQ10
DECIDE framework must provide a
way for team members to
communicate with each other.

Not covered.

DEVOPS-REQ11
DECIDE framework must provide a
way for team members to plan the
development process.

Not covered.

DEVOPS-REQ13

DECIDE framework must support the
application of best practices and
design principles during the first
phases of the development.

Not covered.

For this prototype, we have focused on developing a strong backend architecture, able to accomplish
the basic requirements of the DevOps framework, defining a modular architecture which relies on
hosting every tool inside an independent container, so that they can be accessed either from the
platform controller, or from any other means. In this initial version of the prototype, we have not
considered the user authentication and session functionalities, but we have rather focused on the
connectivity between the tools and its orchestration since this is actually the core of DECIDE DevOps
framework.

Another goal for this version is to agree on how the UI of each tool should be presented in the DevOps
frontend, establishing an agreement between all the DECIDE project members in order to choose
common style guidelines for the design of the visual interface.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 12 of 22

www.decide-h2020.eu

2.1.1 Fitting into overall DECIDE Architecture

Before explaining in-depth the most important technical aspects of the DevOps framework
implementation, we introduce how the framework is connected with the rest of DECIDE modules, and
represent the interfaces that enable the communication among them.

As described above, the DevOps framework is responsible for providing an intuitive user interface (UI)
to developers and operators, so that they are able to orchestrate the communication between the
different DECIDE tools and can provide as input all the parameters necessary to execute them.

Most of the information required by the tools is contained inside the Application Description, which is
a configuration file hosted remotely in JSON format, that can be edited by the DevOps framework and
by any of the DECIDE tools by pushing those changes to the Git repository where it is stored.

The following picture shows how the DevOps framework fits in the general architecture:

Figure 1. DevOps Framework within DECIDE

2.2 Technical description

In this section we describe the technical specifications of the DevOps framework implementation,
explaining the global architecture of the system and the behaviour of the main components.

2.2.1 Prototype architecture

We have designed a microservices architecture based on isolated containers that communicate with
each other to obtain the required data. The general architecture of the DevOps framework for this
initial version is shown in the diagram below. It is composed of multiple modules that communicate
with each other using Cloud Computing techniques, such as service discovery between each module,
load balancing to control traffic inside the containers network. The details of each of these components
are detailed in the next section 2.2.2

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 13 of 22

www.decide-h2020.eu

Figure 2. DevOps Framework prototype’s architecture diagram

In addition, the DevOps framework will communicate with a local database to store internal
information about orchestration between components, and manage the DECIDE applications creation
process. This database (not shown in the previous figure) is not yet implemented, since the details of
user and application management are not defined at this stage, but it will be included in the next
release of the DevOps framework.

Regarding the isolation of each microservice, the DevOps platform has been deployed using Docker
technology (more detailed in section 2.2.3), which allows to containerize each application inside a
separated component, and redirect the communication with the rest of the network containers,
handling network aspects such as service discovery techniques, REST client definition or load balancing
between nodes. Finally, this cloud architecture provides a solution ensuring high scalability and fault
tolerance, obtaining as a result, a robust approach that allows to implement new tools in the future or
adapt the platform easily, in case a tool includes important changes in upcoming versions.

2.2.2 Components description

In this section, we explain each component represented in the above architecture diagram, detailing
their main functionalities and specifications in the DevOps framework. We explain firstly several key
concepts about the Spring Cloud modules used in the project, so that the internal architecture can be
better understood.

2.2.2.1 Spring Cloud

The Spring Cloud framework offers different modules that helps the platform to carry out multiple
cloud computing operations automatically, without being concerned on how each node talks to others,
or caring about traffic overload between network elements. In the current version of the DevOps
framework, we have mainly used three of them:

• Zuul: It is a very useful component that allows to define an API gateway for the platform, and
attach the different microservices path inside the configuration, so in case a request is made
to one of these services, Spring Cloud will manage the redirection of it. In our case, we have
used Zuul inside de DECIDE API gateway container, declaring in its configuration the internal
paths of each microservices contained in the platform, so in case a service is requested from
the outside, the path will be obtained from Zuul.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 14 of 22

www.decide-h2020.eu

• Eureka: It is the responsible component for the service discovery procedure. It consists on a
centralized server where once a new microservice wakes up, it is registered inside the Eureka
server. This way, in case other services need information from another service, Eureka will
provide a suitable domain name to communicate with the destination.

• Feign: Its main goal is to facilitate the communication from one microservice to another one
by consuming an API REST. The Feign module allows to create a client with all the API calls of
a remote RESTful service, and link these calls with the endpoint transparently. Although, inside
the DevOps framework environment, this allows us to access to other tools microservices by
importing their corresponding API RESTs as local clients.

There exist other Spring Cloud modules that are interesting for future versions, like the authentication
or security modules. Moreover, most of these components includes smaller ones inside, such as
Hystrix, which handles the circuit break control and over latency problems inside the cloud, or Ribbon,
that manages the load balancing for HTTP requests between microservices.

2.2.2.2 DevOps framework - Backend.

API Gateway

The API Gateway acts as an entrance for the rest of the project submodules. It implements Zuul module
from Spring Cloud, so any request made to the platform could be redirected correctly. It also has the
frontend dashboard website, which main page is redirected when accessing to the gateway default
access point.

Application Description microservice

This service handles the communication with all the remote Application Descriptions included in the
DevOps platform. The service contains an API REST to communicate with the AppManager tool [2],
which provides an accessible communication interface to configure and manage the Git repository
where the application description JSON is stored. It also implements the Eureka service discovery, so
any other microservice in the platform can retrieve or update any value contained in the application
description.

DECIDE tools microservices (OPTIMUS, ARCHITECT …)

This group refers to all the containers whose main goal is to provide a communication interface
between the DevOps framework and the remote tool site itself. Depending on the tool, the service will
contain specific remote API calls, that retrieve useful data to be displayed in the UI, or acts as a proxy
obtaining an embedded UI directly from the component site. Due to the early stage of the tools
implementation, the functionalities offered by each tool API are focused on testing the communication
obtaining relevant information about the state of the remote service, or displaying a placeholder
description about the tool installation process.

Eureka registry server

This component must be initialized first, so once another microservice is launched, it should be
registered in the discovery server to be reachable by the rest of the platform microservices.

Database

This module contains a very simple database where the platform saves several information about the
tools and DECIDE application basic information, like the location of its application description remote
repository, or several information that is still not possible to fulfil from the UI, or be provided by the
tools endpoints. It is currently not represented in the architecture diagram because it is not
implemented yet, since the details of user and application management are not defined at this stage

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 15 of 22

www.decide-h2020.eu

2.2.2.3 DevOps framework - Frontend.

All backend microservices are consumed by the main DevOps framework dashboard. Because of the
frontend technology used in the implementation, it also has a modular architecture based on
components, defined through TypeScript descriptive language. The dashboard consumes de API REST
pointing to the gateway endpoint, being able to access each microservice’s API REST calls. The content
is displayed in the webpage using Angular 2 for server communication, and HTML to structure the
application layer.

The DevOps platform’s style guidelines follow the Material Design [3] pattern, which have been agreed
with the rest of DECIDE tools developers in order to establish a common design pattern for the
integrated view.

2.2.3 Technical specifications

As we have presented in previous sections, we have chosen a microservices architecture based on
isolated containers that communicate with each order to obtain the required data and serve the
frontend resources. Each microservice has been developed using Java programming language, and
more concisely using the Spring Boot framework based on MVC architecture. In order to link all the
components to each other, the platform has integrated the Spring Cloud toolkit, which offers a
complete solution for cloud services development. In the other hand, the frontend is mainly composed
by a dashboard which uses Angular 2 technology, where it is represented the tools information
obtained from the microservices.

This modular architecture has been achieved by containerizing each component using Docker
containers technology. This allows to deploy each tool regardless from the rest of the platform
elements, and pass unit tests for each DECIDE tool before test the whole integration together. Each
tool has a Dockerfile attached so it can be built as a standalone instance, and the DevOps framework
contains a docker compose file where the instructions to build up the platform with all the tools
running as microservices are detailed step by step. This cloud architecture also allows to deploy the
scenario as a distributed system, installing each microservice within a cloud provider machine instead
of running it inside a local virtualized environment. We will provide a deep explanation on how to
deploy the DevOps framework in the next sections.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 16 of 22

www.decide-h2020.eu

3 Delivery and usage

3.1 Package information

Each microservice container has almost the same package architecture, because every microservice
has been developed using Spring Boot framework. The global architecture of the DevOps framework
is represented below.

Figure 3. DevOps framework general project’s file structure

We will briefly detail the architecture of each component without going too deep, because there are
lots of files involved, so we will just explain those that are more representative for a better
understanding of the project architecture.

Gateway

Here it is contained the API gateway code, and the frontend code, developed in Angular 2+.

Figure 4. Gateway microservice file structure

 ARCHITECT service

It manages the communication with ARCHITECT, in this case the retrieval of the patterns hosted in the
ARCHITECT remote tool endpoint.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 17 of 22

www.decide-h2020.eu

Figure 5. ARCHITECT microservice file structure

OPTIMUS service

It manages the communication with OPTIMUS, in this case the retrieval of the installation process,
which is a static content in the current version.

Figure 6. OPTIMUS microservice file structure

App Manager service

It manages the manipulation of the remote application, and the creation of a new DECIDE app. It
directly communicates with the Git repository, and has imported the App Manager jar file.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 18 of 22

www.decide-h2020.eu

Figure 7. App. Manager microservice file structure

JENKINS service

It obtains the information from the remote Jenkins endpoint associated. It basically retrieves all the
jobs status for the linked profile.

Figure 8. JENKINS microservice file structure

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 19 of 22

www.decide-h2020.eu

Eureka registry service

It enables service discovery between the rest of the microservices using Eureka Spring Cloud module.

Figure 9. Eureka registry microservice file structure

3.2 Installation instructions

To deploy each container in an easy way, we have created a docker compose configuration file so once
the user begins the installation process, it starts the initialization of the required services in a
background task. The user can also build the Docker images for each microservice by compiling the
Dockerfile included in each module directory, but this could be a bit tedious, and the services should
be instantiated in a certain order so Spring Cloud modules are initialized correctly, and also because
module may communicate with others.

Installation requirements

• Have Docker tool installed in your machine and accessible from the terminal.

• Have Git installed, or just unzip the compressed file downloaded from the repository (see
section 3.5).

• We also recommend running the DECIDE DevOps framework in a powerful machine, because
the project is composed of a total of 6 Docker containers and that may consume some of your
RAM resources. Our recommendation is to have a minimum of 4Gb RAM resources and about
1GB free for storage.

Getting started

1. Clone the DevOps framework Git repository in your computer.
2. Navigate to the main root directory of the project
3. Run in the console the command docker-compose up
4. It will automatically deploy all the microservices containers in your localhost domain. This

deployment may take a few minutes (about 1 minute), to be fully configurated and accessible
from your browser.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 20 of 22

www.decide-h2020.eu

5. Access to the main DevOps framework web page in http://localhost:4000 in your local machine
browser.

6. You can access with any credentials, since authentication module is still not defined. Try with
admin as user and password.

Production deployment

 A production deployment will be available for all DECIDE team members.

3.3 User Manual

Once the microservices scenario deployment process has finished, the user should access to the
gateway entrance to visualize the DevOps framework (http://localhost:4000). The URL and port
mapping for each container is the following:

• DevOps framework dashboard (gateway): http://localhost:4000

• Jenkins service API endpoint: http://localhost:4000/jenkins

• Application description API endpoint: http://localhost:4000/appdesc

• Architect API endpoint: http://localhost:4000/architect

• OPTIMUS API endpoint: http://localhost:4000/optimus

• Eureka registry dashboard: http://localhost:8761

3.4 Licensing information

This component is offered under the MIT license.

3.5 Download

The source code is uploaded in WP2 DECIDE git repository and available here:

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/DevOpsFramework

You can also access to our testable deployed version by accessing to:

http://mng.experis.es/decide

http://www.decide-h2020.eu/
http://localhost:4000/
http://localhost:4000/
http://localhost:4000/
http://localhost:4000/jenkins
http://localhost:4000/appdesc
http://localhost:4000/architect
http://localhost:4000/optimus
http://localhost:8761/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/DevOpsFramework
http://mng.experis.es/decide

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 21 of 22

www.decide-h2020.eu

4 Conclusions

This document presents the initial prototype of the DevOps framework, corresponding to the M15
release. It describes the prototype from a functional and a technical point of view, and it contains
usage and installation instructions for the component.

The next release of this deliverable (D2.7) will document the second version of the DevOps framework,
which will provide new functionalities and a higher-level of integration with all the DECIDE tools and
KRs.

http://www.decide-h2020.eu/

D2.6 – Initial DECIDE DevOps Framework Integration Version 0.1 – Final. Date: 28.02.2018

© DECIDE Consortium Contract No. GA 731533 Page 22 of 22

www.decide-h2020.eu

References

[1] DECIDE Consortium, “D2.1 - Detailed requirements specification v1,” 2017.

[2] DECIDE Consortium, “AppManager,” 2018. [Online]. Available:
https://git.code.tecnalia.com/decide/WP3/tree/master/AppManager. [Accessed 20 February
2018].

[3] Google, "Material Design," [Online]. Available: https://material.io/. [Accessed 20 February 2018].

http://www.decide-h2020.eu/

