
D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 1 of 69 

www.decide-h2020.eu  

 

 

 
 

 

 

 

Deliverable D2.5 

Detailed architecture v2 

 

 

 

 

Editor(s): Juncal Alonso 

Responsible Partner: TECNALIA 

Status-Version: Final - v1.0 

Date: 31/10/2018 

Distribution level (CO, PU): PU 

 

  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 2 of 69 

www.decide-h2020.eu  

Project Number: GA 731533 

Project Title: DECIDE 
 

Title of Deliverable: D2.5 – Detailed architecture v2 

Due Date of Delivery to the EC: 31/10/2018 

 

Workpackage responsible for the 
Deliverable: 

WP2 – DECIDE requirements and DECIDE solution 
integration 

Editor(s): TECNALIA 

Contributor(s): 

Juncal Alonso, Gorka Benguria, Marisa Escalante, 
Maria Jose Lopez, Iñaki Etxaniz, Alberto Molinuevo, 
Leire Orue-Echevarria (TECNALIA), Javier Gavilanes, 
Antonio Fernandez (Experis), Lorenzo Blasi, Paolo 
Barone (HPE), Simon Dutkowski, Kyriakos Stefanidis 
(Fraunhofer), Vitalii Zakharenko, Andrey Sereda(CB) 

Reviewer(s): TECNALIA 

Approved by: All Partners 

Recommended/mandatory 
readers: 

WP3, WP4, WP5 

 

Abstract: This is the second release of the detailed design of the 
DECIDE framework including its components, modules, 
interfaces updated according to the comments 
received from the use cases implementation. 

Keyword List: Architecture, components, technical design, 
interfaces, interoperability, deployment, DevOps. 

Licensing information: This work is licensed under Creative Commons 
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) 
http://creativecommons.org/licenses/by-sa/3.0/  

Disclaimer This document reflects only the author’s views and the 
Commission is not responsible for any use that may be 
made of the information contained therein 

  

http://www.decide-h2020.eu/
http://creativecommons.org/licenses/by-sa/3.0/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 3 of 69 

www.decide-h2020.eu  

Document Description 

Document Revision History 

Version Date 
Modifications Introduced 

Modification Reason Modified by 

v0.1 26/09/2018 First draft version including TOC and 
assignments 

TECNALIA 

v0.2 05/10/2018 Updated and included content in several 
sections: 1, 2.1, 2.2. 

TECNALIA 

v0.3 12/10/2018 Included content in sections: 2,3,4.3.3 
Annex 1. 

TECNALIA 

v0.4 13/10/2018 Included content in sections 4.2.1, 
4.4.1,5.2 

EXPERIS, HPE 

v0.5 18/10/2018 Included new sub-section 1.2-Innovation 
of the deliverable 
Included content in sections 4.3.1, 5.1 
and Annex 1 

TECNALIA, HPE 

v0.6 22/10/2018 Included content in sections 
4.1.1,4.1.2,4.3.2, 4.4.1, 5.1and Annex 1 

Fraunhofer, Experis 

v0.7 25/10/2018 Included content in section 5.1. 
Addressed internal review comments 

CB, TECNALIA 

v0.8 25/10/2018 Updated Annex 1. Fraunhofer 

v0.9 29/10/2018 New sub- section introduced: 3. Re-
deployment workflow 

TECNALIA 

V1.0 30/10/2018 Ready for submission TECNALIA 

  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 4 of 69 

www.decide-h2020.eu  

Table of Contents 

Table of Contents .................................................................................................................................... 4 

List of Figures ........................................................................................................................................... 5 

List of Tables ............................................................................................................................................ 6 

Terms and abbreviations ......................................................................................................................... 7 

Executive Summary ................................................................................................................................. 8 

1 Introduction ..................................................................................................................................... 9 

1.1 About this deliverable ............................................................................................................. 9 

1.2 Innovation of this deliverable ................................................................................................. 9 

1.3 Document structure .............................................................................................................. 10 

2 Overview of the DECIDE integrated conceptual architecture ....................................................... 11 

2.1 Multi-Cloud classification ...................................................................................................... 11 

2.2 DevOps and DECIDE extended DevOps ................................................................................. 13 

2.3 DECIDE Tools for multi-cloud applications architecting ........................................................ 14 

2.3.1 NFR Editor ...................................................................................................................... 14 

2.3.2 ARCHITECT ..................................................................................................................... 15 

2.4 DECIDE Tools for multi-cloud applications continuous development and integration ......... 15 

2.4.1 DevOps framework ........................................................................................................ 15 

2.5 DECIDE Tools for multi-cloud applications (pre) deployment ............................................... 15 

2.5.1 OPTIMUS ....................................................................................................................... 15 

2.5.2 App Controller ............................................................................................................... 15 

2.6 DECIDE tools for multi-cloud applications continuous delivery ............................................ 16 

2.6.1 ACSmI ............................................................................................................................ 16 

2.7 DECIDE tools for multi-cloud applications continuous adaptation ....................................... 16 

2.7.1 ADAPT deployment and monitoring ............................................................................. 16 

2.7.2 MCSLA Editor ................................................................................................................. 16 

3 Alternative workflows ................................................................................................................... 17 

3.1 Re-deployment workflow ...................................................................................................... 17 

3.2 Starting the workflow from OPTIMUS ................................................................................... 20 

3.3 Starting the workflow from ACSmI ........................................................................................ 22 

3.4 Starting the workflow from ADAPT ....................................................................................... 23 

4 Detailed DECIDE integrated architecture ...................................................................................... 24 

4.1 DECIDE tools for multi-cloud applications design and development .................................... 24 

4.1.1 NFR editor ...................................................................................................................... 24 

4.1.1.1 Structural description ................................................................................................ 24 

4.1.1.2 Behavioural description ............................................................................................. 25 

4.1.2 ARCHITECT ..................................................................................................................... 26 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 5 of 69 

www.decide-h2020.eu  

4.1.2.1 Structural description ................................................................................................ 26 

4.1.2.2 Behavioural description ............................................................................................. 28 

4.2 DECIDE tools for multi-cloud applications continuous integration and testing .................... 29 

4.2.1 DevOps framework ........................................................................................................ 29 

4.2.1.1 Structural description ................................................................................................ 29 

4.2.1.2 Behavioural description ............................................................................................. 31 

4.3 DECIDE tools for multi-cloud applications (pre) deployment ............................................... 32 

4.3.1 OPTIMUS ....................................................................................................................... 32 

4.3.1.1 Structural description ................................................................................................ 32 

4.3.1.2 Behavioural description ............................................................................................. 33 

4.3.2 Application controller .................................................................................................... 34 

4.3.2.1 Structural description ................................................................................................ 34 

4.3.2.2 Behavioural description ............................................................................................. 36 

4.3.3 ACSmI ............................................................................................................................ 36 

4.3.3.1 Structural description ................................................................................................ 36 

4.3.3.2 Behavioural description ............................................................................................. 40 

4.4 DECIDE Tools for multi-cloud applications continuous operation ........................................ 42 

4.4.1 ADAPT ............................................................................................................................ 42 

4.4.1.1 Structural description ................................................................................................ 42 

4.4.1.2 Behavioural description ............................................................................................. 43 

4.4.2 MCSLA Editor ................................................................................................................. 45 

4.4.2.1 Structural description ................................................................................................ 45 

4.4.2.2 Behavioural description ............................................................................................. 47 

5 DECIDE tool suite deployment ...................................................................................................... 48 

5.1 DECIDE tools deployment options ........................................................................................ 48 

5.2 Information exchange between DECIDE tools ...................................................................... 51 

6 Conclusions .................................................................................................................................... 52 

7 References ..................................................................................................................................... 53 

Annex 1: App Description ...................................................................................................................... 55 

 

List of Figures 

FIGURE 1. DECIDE INTEGRATED GENERIC ARCHITECTURE. ................................................................................ 11 
FIGURE 2. EVOLUTION IN SOFTWARE DEVELOPMENT AND DEPLOYMENT ARCHITECTURES ....................................... 12 
FIGURE 3. DECIDE EXTENDED DEVOPS APPROACH ......................................................................................... 14 
FIGURE 4. DECIDE WORKFLOW [1] .............................................................................................................. 17 
FIGURE 5. DECIDE RE-DEPLOYMENT WORKFLOW. .......................................................................................... 18 
FIGURE 6. NFR EDITOR COMPONENT DIAGRAM .............................................................................................. 24 
FIGURE 7. NFR EDITOR EXTERNAL INTERFACES COMPONENT DIAGRAM ............................................................... 25 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 6 of 69 

www.decide-h2020.eu  

FIGURE 8. NFR EDITOR SEQUENCE DIAGRAM. ................................................................................................. 26 
FIGURE 9 COMPONENTS OF ARCHITECT ...................................................................................................... 27 
FIGURE 10. USE CASES OF ARCHITECT ........................................................................................................ 28 
FIGURE 11 CREATE NEW DECIDE PROJECT, SEQUENCE DIAGRAM. ..................................................................... 29 
FIGURE 12. DEVOPS FRAMEWORK COMPONENT DIAGRAM ............................................................................... 30 
FIGURE 13. DEVOPS FRAMEWORK INTERFACES DIAGRAM ................................................................................ 31 
FIGURE 14. DEVOPS FRAMEWORK SEQUENCE DIAGRAM .................................................................................. 31 
FIGURE 15. OPTIMUS COMPONENT DIAGRAM .............................................................................................. 32 
FIGURE 16. OPTIMUS EXTERNAL INTERFACES COMPONENT DIAGRAM ............................................................... 33 
FIGURE 17. OPTIMUS SEQUENCE DIAGRAM ................................................................................................. 33 
FIGURE 18. COMPONENT DIAGRAM FOR APPLICATION CONTROLLER .................................................................. 35 
FIGURE 19. SEQUENCE DIAGRAM FOR WRITING AND READING DEPLOYMENT CONFIGURATION ................................ 36 
FIGURE 20. ACSMI HIGH LEVEL ARCHITECTURE .............................................................................................. 38 
FIGURE 21. ACSMI EXTERNAL INTERFACES ..................................................................................................... 40 
FIGURE 22. ACSMI SEQUENCE DIAGRAM ...................................................................................................... 41 
FIGURE 23. ADAPT COMPONENT DIAGRAM AND INTERFACES .......................................................................... 42 
FIGURE 24.  INTERACTIONS OF ADAPT WITH OTHER DECIDE TOOLS ................................................................. 44 
FIGURE 25. COMPONENT DIAGRAM FOR MCSLA EDITOR ................................................................................ 46 
FIGURE 26. SEQUENCE DIAGRAM FOR CREATING AN MCSLA ............................................................................ 47 
 

List of Tables 

TABLE 1. ALTERNATIVE WORKFLOW 1: OPTIMUS + ACSMI + ADAPT + MCSLA EDITOR .................................... 20 
TABLE 2. ALTERNATIVE WORKFLOW 2: ACSMI + ADAPT + MCSLA EDITOR ....................................................... 22 
TABLE 3. ALTERNATIVE WORKFLOW 3: ADAPT + MCSLA EDITOR + ACSMI MONITORING .................................... 23 
TABLE 4. DECIDE KRS’ DEPLOYMENT OPTIONS .............................................................................................. 48 
TABLE 5. APPLICATION DESCRIPTION MODEL .................................................................................................. 55 
TABLE 6. MCSLA OBJECTIVES OBJECT DESCRIPTION (NESTED ELEMENTS FOR “OBJECTIVES”) ................................... 64 
TABLE 7. NESTED ELEMENTS FOR VIOLATIONTRIGGERRULE ............................................................................... 65 
TABLE 8. MCSLA METRIC DATA MODEL FOR MONITORING ............................................................................... 65 
TABLE 9. NESTED ELEMENTS FOR EXPRESSION ................................................................................................. 67 
TABLE 10. NESTED ELEMENTS FOR PARAMETER ............................................................................................... 68 
TABLE 11. NESTED ELEMENTS FOR RULE ........................................................................................................ 68 
TABLE 12. NESTED ELEMENTS FOR REMEDY .................................................................................................... 69 
 

  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 7 of 69 

www.decide-h2020.eu  

Terms and abbreviations 

API Application Programming Interface 
App Application 
APP Application 
CSP Cloud Service Provider 
DB Data Base 
DevOps Development and Operation 
DoA Description of Action 
EC European Commission 
IDE Integrated Development Environment 
KR Key Result 
Mx Month x, where x represents a number 
MCSLA Multi Cloud Service Level Agreement 
MTTR Mean Time To Recovery 
NFR Non-Functional Requirement 
RCP Rich Client Platform 
SDK Software Development Kit 
SLA Service Level Agreement 
SPA Single Page Application 
Sw Software 
UI User Interface 
WP Work Package 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 8 of 69 

www.decide-h2020.eu  

Executive Summary 

This document provides the specification of the DECIDE integrated architecture at month 23, a second 
and final specification1 of the entire DECIDE integrated architecture, aiming to ensure a smooth 
integrated specification at conceptual, functional and technical level of the different building blocks, 
i.e. Key Results (KR), that constitute the DECIDE tool-suite. DECIDE tool-suite enables users (developers 
and operators) of multi-cloud applications to implement the DECIDE extended DevOps approach, by 
providing a comprehensive set of tools that assists users to complete the DECIDE lifecycle [1]. The 
presented DECIDE extended DevOps approach comprises the following phases and supporting tools: 

• Multi-cloud applications architecting: Supported by the following DECIDE tools: NFR Editor and 
ARCHITECT. 

• Multi-cloud applications continuous development and integration: Supported by the following 
DECIDE tools: DevOps Framework. 

• Multi-cloud applications (pre)deployment: Supported by the following DECIDE tools: OPTIMUS 
and App Controller. 

• Multi-cloud applications continuous delivery: Supported by the following DECIDE tools: ACSmI. 

• Multi-cloud applications continuous adaptation: Supported by the following DECIDE tools: 
ADAPT and MCSLA Editor.  

DECIDE comprises diverse technical and scientific activities that contribute altogether to the jointly 
materialization of the DECIDE outcomes. However, a successful instantiation of these techniques and 
tools requires an integration task force, materialized in this document, which aims to converge these 
different conceptual and technical approaches and the earlier detection and fixing of potential 
misalignments that may occur during the initial design and development phases.  

In this scope, the global and integrated architecture described in this document aims to: a) provide an 
overall and comprehensive conceptual and functional description of the DECIDE tool-suite in their 
current state, b) ensure a smooth conceptual and technical interoperability among DECIDE tools that  
guarantees a correct instantiation of the DECIDE extended DevOps approach, c) describe the tools 
interoperability needs in terms of messages consumed and provided by each tool, d) provide a detailed 
structural and behavioural view of the different tools, grouped on packages of related functionality, 
and e) expose and discuss the available possibilities for the deployment of DECIDE tool-suite. The 
current document (which has been created and delivered in the context of WP2) is describing at 
general level the different components inside the DECIDE tool suite. The details of the components are 
described in the deliverables to be generated in the different technical WPs (WP3, WP4 and WP5). 
Both the novel approaches for the multi-cloud applications and DECIDE extended DevOps and how 
DECIDE tools supports them are the main innovations presented in the current deliverable. 

This document is the reference for the next DECIDE tools implementation (new versions to be released 
in M24 and 30) and will be continuously checked, used, aligned and updated as a result of other DECIDE 
activities during final development of their components and tools to ensure that they are conceptually 
and technically aligned and compatible with others as these may need to interoperate with. To this 
respect the Application Description (Annex 1) is still being updated as new needs for the tools arise. 
This annex will be continuously updated and used as the reference for the last updated Application 
Description schema.  

                                                           
1 The firstspecification was released on M12. [2] 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 9 of 69 

www.decide-h2020.eu  

1 Introduction 

1.1 About this deliverable  

This document provides the M23 specification of the DECIDE integrated architecture. This architecture 
collects and describes the main functional key results, tools and components that constitute the 
DECIDE tool-suite, that is, the comprehensive set of tools created by DECIDE, for developers and 
operators of multi-cloud applications to apply the DECIDE DevOps extended approach. This document 
provides an updated version of the DECIDE architecture delivered in M12 [2]. 

DECIDE Key Results (and related tools and components) are described as functional blocks, including 
structural and behavioural aspects. The descriptions of the components included in this document aim 
to provide a general overview of the functionalities of the key results and the interactions between 
them. The internal representation of the tool (i.e. its internal technical specification) is not addressed 
in this document but left to further dedicated technical reports (for each tool) that describe them, 
along with the actual implementation in the different releases [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 
[13] [14] [15] [16]. 

This overall description aims to prove a complete and correct coverage of the DECIDE extended DevOps 
approach, providing means (in form of tools and components) to support each phase of the approach. 

Special attention is also given to address interoperability between tools, that is, the dependencies 
between the tools and the technical ways in which those dependencies are managed. Interoperability 
implies taking care of different dimensions which allows us to identify and define:  

• Messages exchange, including compatibility at data content (semantic alignment), data 
format, serialization format, etc. 

• User-driven interaction model, as we foresee most of interoperable situations driven by the 
end-users of the tools. 

This analysis enables to obtain an earlier detection of possible conceptual and technical misalignments 
(among tool providers), either at conceptual level (i.e. semantics), or at functional and a technical level. 
Based on this analysis, the document proposes a harmonized conceptual, functional and technical 
common view that removes these misalignments and enables the specification, by each tool provider, 
of an interoperable toolset design. In particular, the dependencies amongst tools are identified by 
detecting the products they consume (as inputs) and produce (as outputs), which would be, in turn, 
produced and consumed by other tools. 

The document also presents and discusses the different possibilities for the deployment of the tools 
to be implemented in DECIDE and for the whole DECIDE Framework. 

In this report, the specification of the Application Description is included as an Annex. This specification 
describes all the parameters included in the Application Description. The Application Description is a 
file used during the DECIDE workflow to exchange relevant information about the status of the 
Application in each step of the workflow. The Application Description is updated and read by every KR 
in DECIDE, to perform their corresponding actions. 

1.2 Innovation of this deliverable  

This deliverable introduces the generic architecture of the DECIDE framework and its corresponding 
KRs. Each of the KRs includes innovative aspects that are expressed in their corresponding deliverables. 
At general level, this deliverable presents how the DECIDE tools support the DevOps philosophy for 
the specific case of native multi-cloud applications. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 10 of 69 

www.decide-h2020.eu  

Therefore, this is the main innovative point of the current report. The proposed DECIDE Extended 
DevOps concept extends the traditional DevOps cycle with new phases (such as continuous 
architecting, continuous pre-deployment, continuous delivery and continuous adaptation) which aims 
to support the specific needs of multi-cloud native applications. 

1.3 Document structure 

This document is structured as follows. 

Section 2 provides an overall conceptual and functional introduction to the entire DECIDE tool-suite, 
an introduction to the DECIDE multi-cloud concept and to the DECIDE proposed extended DevOps 
approach.  

Section 3 provides a detailed description of each DECIDE tool, individually and in the scope of the 
interactions with other tools in DECIDE tool-suite. The description is both structural -i.e. component 
dependencies, required and provided interfaces, etc.- and behavioural -i.e. temporal ordered 
interactions-, attending mainly to interoperability concerns.  

Section 4 describes the deployment alternatives for the DECIDE tools, both as individual components 
and as an ecosystem as a whole.  

Section 5 presents the conclusions of the document. 

In the Appendix of the document, the current version of the App Description, which is the main 
mechanism for the interchange of information between tools in DECIDE, is presented.  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 11 of 69 

www.decide-h2020.eu  

2 Overview of the DECIDE integrated conceptual architecture  

This section sketches the structural view of the DECIDE tool-suite architecture. More elaborated 
behavioural and structural views of the DECIDE tool-suite architecture will be presented in next 
sections. 

This DECIDE architecture sketch (figure 1) is structured in blocks that correspond to the main DECIDE 
key results (KRs) and are co-located in the extended DevOps phases for multi-cloud applications as 
defined in section 2.2, i.e. 1- Architecting, 2- Continuous development and testing, 3- pre-deployment, 
4- continuous delivery and 5- Continuous adaptation, to introduce the DECIDE KRs. Some of the KRs 
(i.e. ACSmI) support several phases of the DECIDE DevOps extended approach. In the figure below two 
elements are depicted in a different way to stress their singularity: 
 

• DevOps framework: DevOps framework is one of the KRs of DECIDE. It is singular because, on 
one hand, it includes the necessary existing tools for development and integration (i.e. 
software repository, software development Kit, IDEs, etc.) and on the other hand, it provides 
the means to integrate the rest of the KRs in a unique stable toolkit (UIs, actions handling, 
sensitive data management and storage, etc.). More information about the DevOps 
framework is provided in section 4.2.1. 

• App Description and Application Controller: Application Description (App Description from now 
on) is not a DECIDE KR, tool or component as such. It is a file where the actual status of the 
application is described. This file is used for the different KRs in DECIDE to store/acquire 
relevant information with respect to the application status needed to the correct operation of 
the different tools. App Controller is a java library used to access, read, and update information 
in the App Description. More information about the Application Description is provided in 
section 5 and in Annex 1. More information about the Application Controller is provided in 
section 4.3.2. 
 

 

Figure 1. DECIDE integrated generic architecture. 

2.1 Multi-Cloud classification 

In the context of DECIDE a multi-cloud application is defined as a set of components distributed across 
heterogeneous cloud resources but that still succeed in interoperating as a single whole. 
 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 12 of 69 

www.decide-h2020.eu  

As described in D2.1 [1], multi-cloud is the use of multiple computing services for the deployment of a 
single application or service across different cloud technologies and/or Cloud Service providers. This 
may consist of PaaS, IaaS and SaaS entities in order to deliver an integrated end to end solution 

This definition of multi-cloud, when referring to the resources where the different components are 
deployed, includes services which are in dispersed cloud providers or different cloud platforms 
(regardless of vendor) [17]:  

• Deployment of services across multiple geographically dispersed cloud service providers. 

• Deployment of services across different cloud technologies within a single cloud service 
provider. 

• Deployment of services within a single cloud service provider in one technology. 

The next figure a depicts the evolution in software development and deployment architectures. 

 

VM

CSP4

VM

CSP1

Container

CSP2

Container

CSP3

VM

CSP6

VM

CSP7

Container

CSP5

VM

CSP4

MS1 MS2 MS3

MS4 MS5 MS6

MS6

MS2

MS5MS4

MS3MS1

MS6

MS2

MS5MS4

MS3MS1

VM
CSP1

VM
CSP2

Load Balancer/Cluster 
Manager

a) Monolithic application b) Distributed application

e) Multi-Cloud Application

c) Distributed Cloud Native Application 

d) Multi-Cloud Application 
Replication/Clustering

 

Figure 2. Evolution in software development and deployment architectures 

This figure, already presented in D3.1 [18] presents the large difference between cloud native 
application and multi-cloud native architectures and deployments. It starts off with depicting a 
monolithic application (a)); b) depicts a distributed application in the traditional sense; c) depicts a 
microservices-based cloud native application; d) depicts a distributed application replicated or scaled 
across two CSPs and, finally, d) depicts a multi-cloud application’s architecture and deployment as 
defined by the DECIDE project. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 13 of 69 

www.decide-h2020.eu  

With this strategy2, i.e. multi-cloud architecture and its deployment, considerations must be made 
regarding the architectural challenges and decisions that allow an application with its microservices to 
be seamlessly deployed and adapted across different CSPs.  

The challenges that arise when designing a multi-cloud application are listed below, and form the basis 
for all considerations when designing an application in the context of DECIDE: 

• Resilience and portability of the components or microservices of an application; when porting 
processes across clouds, MTTR must be decreased, and disconnected scenarios and faults have 
to be avoided. In addition, cost effective deployment of the application, by abstracting from 
cloud vendor specifics and without having to manually adapt to new interfaces must be  given.  

• Respecting of the applications defined NFRs. 

• The applications components (e.g. microservices) should work together in an integrated 
manner. Microservices’ endpoints must be managed and discoverable in case of switching 
hosts (IP addresses). 

• Just as the portability of microservices, data migration or replication should be easily handled 
and not pose a problem 

• The use of provider specific SaaS and IaaS services, because of each service providers 
intricacies (e.g. different APIs, data storage), should be possible. 

• Dynamic re-configuration of the application properties should be possible. 

2.2 DevOps and DECIDE extended DevOps 

DevOps is a set of practices that automates the processes between software development (Dev) and 
IT teams (Ops) so they can build, test, release and deploy software applications more quickly, reliably 
and continuously. In traditional DevOps approaches, IT roles are merged and communication is 
enhanced to improve the production release frequency and maintain software quality [19]. The 
foreseen benefits of the DevOps philosophy include increased trust, faster software releases, 
automated testing and the ability to solve critical issues quickly.  

When applying this philosophy to multi-cloud applications (see previous section) some shortcomings 
arise. These are caused by the peculiarities when developing, deploying and operating such multi-cloud 
applications that have not been deeply analysed nor supported by current DevOps solutions [20]: 

▪ Applications need to be responsive to hybrid/multi-cloud model scenarios, in which an 
application that is executing in a concrete set of cloud services bursts into a new one when the 
working conditions are not met. This implies that the application architecture shall be re-
designed to be “multi-cloud” aware, simplifying the cloud application assembly and the 
deployment process.  

▪ Means shall be provided to manage and assess cloud deployment alternatives to better support 
cloud re-deployment decisions. This implies profiling and classifying application components and 
cloud nodes, as well as analysing and simulating the behaviour of the application to support the 
deployment decision making process, considering additional factors such as Non-Functional 
Requirements (NFR), namely performance, availability, localization, cost, or risks associated with 
the change of cloud resources. Multi-cloud has value only when the right providers are selected, 
whether public or private (combined into different cloud deployment models), to meet 
functional and NFR. But the manual selection and combination of those Cloud Services to create 
the best deployment scenario may imply huge effort, time and knowledge needs.  

                                                           
2 A pre-requisite for a multi-cloud strategy is a distributed application that is loosely coupled with stateless 

properties. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 14 of 69 

www.decide-h2020.eu  

▪ Existing cloud services shall be made available dynamically, broadly and cross border. so that 
software providers can re-use and combine cloud services, assembling a dynamic and re-
configurable network of interoperable, legally secured, quality assessed (against SLAs) single and 
composite cloud services. 
 
To overcome these shortcomings, DECIDE project proposes an extension of the “traditional” 
DevOps approach on both axis: Dev and Ops. 

 

 

Figure 3. DECIDE extended DevOps approach 

The extended DevOps phases and how DECIDE supports them are described in the next sections. 

2.3 DECIDE Tools for multi-cloud applications architecting 

2.3.1 NFR Editor 

NFR editor is the component where the developers can state the Non-Functional Requirements (NFRs) 
they want to consider during the development and operation of the multi-cloud application. The NFRs 
can be qualitative or quantitative. In the context of DECIDE action the NFRs fall into the following 
categories, but they can be extended with new ones when needed (NFR Editor will provide means for 
this): 

• Availability 

• Cost 

• Location 

• Security 

• Performance 

• Scalability 

The selected NFRs that are taken into account during the whole DECIDE process: 

1. During the design phase, for proposing the most appropriate architectural design for 
complying with the selected NFRs 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 15 of 69 

www.decide-h2020.eu  

2. In the pre-deployment phase for performing the simulation with the objective of fulfilling the 
NFRs 

3. In the continuous operation phase for monitoring and assessing that the selected NFRs are 
being fulfilled at run-time 

2.3.2 ARCHITECT 

The ARCHITECT tool consists of a catalogue of architectural patterns. These patterns serve for the 
optimization, development and deployment of applications to become multi-cloud aware. The idea is 
to present the developers with a set of architectural patterns to follow during the application design 
phase. These patterns are suggested to the developers based on the selected and prioritized NFRs as 
well as additional properties concerning the application (e.g. the number of micro services and 
whether they are stateless). The ARCHITECT tool is to be used by the developers at their discretion in 
the design phase. The ARCHITECT tool is also closely related to the development phase. The suggested 
patterns provide a description of how these patterns can be applied during the implementation of the 
code. 

2.4 DECIDE Tools for multi-cloud applications continuous development and 
integration 

2.4.1 DevOps framework 

The DevOps framework is the integration point for all DECIDE tools and Key Results. It provides five 
main functionalities: 

1. It serves as entry point to DECIDE. A user wishing to utilize the tools will do so through the 
DevOps framework. 

2. It creates the needed resources and information for a DECIDE project, so that the process can 
be started (folders, git repository location, initial application description file, etc.) 

3. It integrates the different tools and KRs. It provides access to them, a UI to check information 
about the projects (microservices data, metrics, SLAs violations, etc.) and centralizes the UIs 
of all the tools. 

4. It orchestrates the workflow. The DevOps framework will launch the appropriate tool for each 
phase of the application’s lifecycle.  

5. It provides generic sensitive data information management functionalities for all the DECIDE 
tools.  

2.5 DECIDE Tools for multi-cloud applications (pre) deployment 

2.5.1 OPTIMUS 

OPTIMUS deployment simulation tool is responsible for evaluating and optimizing the non-functional 
characteristics from the developer’s perspective, considering a set of provided cloud resources 
alternatives. OPTIMUS, working with the continuous delivery supporting tool (ACSmI), will provide the 
best possible deployment application topologies, based on the non-functional requirements set by the 
developer, automating the provisioning and selection of deployment scripts for multi-cloud 
applications. 

2.5.2 App Controller 

The functionality of the Application Controller, as understood by the DECIDE consortium, should reflect 
the status and state of the application which refers to and connect it with the DECIDE tools, enabling 
each tool to understand its corresponding fulfilments. The Application Controller manages the 
application information that is relevant for all the different DECIDE tools. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 16 of 69 

www.decide-h2020.eu  

This functionality has been conceptualised, and solutions for various components and parts of the 
Framework have been introduced. These are: 

• Application Description (JSON File) (see annex 1) – is an information model specific to the 
DECIDE Application and is stored in a repository (e.g. Git) to be accessed by each tool. Each 
tool shares needed information by pushing and pulling from a dedicated repository. With this 
solution, an interoperable mechanism has been introduced. Furthermore, no running service 
is required, which limits a single point of failure and allows the tools to work individually. 

• Application Controller (see section 4.3.2) is a reusable component that holds the logic for the 
Application Description, i.e. the model. It also allows reading and writing from the code 
repository.  

• Furthermore, the Application Controller component assists in managing the knowledge 
regarding the currently used deployment configuration and historical ones. It keeps records of 
whether a deployment configuration was successful and if any SLA violations had occurred in 
the application operation time. With this information, OPTIMUS is able to suggest new and 
adequate deployment configurations. This is described in more detail in Section 4.3.1.  

2.6 DECIDE tools for multi-cloud applications continuous delivery 

2.6.1 ACSmI  

The Advanced Cloud Service (meta-) Intermediator (ACSmI) provides means to assess continuous real-
time verification of the cloud services non-functional properties fulfilment and legislation compliance 
enforcement. ACSmI is solution-centric, as it can discover services from a range available in a service 
registry, always making sure that the best combination for the user (i.e. OPTIMUS and ADAPT) is met, 
while ensuring the integrity and security of the overall ACSmI solution. ACSmI is also able to ensure 
the governance and overall quality of the service provision to the customer by continuously monitoring 
the fulfilment of the SLAs, as well as propagating the legislation changes. 

2.7 DECIDE tools for multi-cloud applications continuous adaptation 

2.7.1 ADAPT deployment and monitoring 

The DECIDE ADAPT tool offers the following functionalities: deployment of multi-cloud applications, 
monitoring of the deployed applications to verify if the declared MCSLA is satisfied or not, and 
deployment adaptation to cope with identified violations. 

ADAPT uses information from the Application Description to generate and apply the scripts for the 
deployment of the multi-cloud application. ADAPT uses ACSmI as a unified interface to create, monitor 
and release CSP resources. ADAPT continuously monitors the MCSLA and, in case of a violation, it 
informs the operator and triggers the redeployment process. Redeployment can be automatic, for a 
low technology risk application, or subject to operator’s confirmation, for a high technology risk one. 

2.7.2 MCSLA Editor 

The MCSLA Editor module is part of the continuous operation phase and serves as the user interface 
(UI) through which the developer can specify the multi-cloud SLAs agreed with the client. The MCSLA 
Editor provides the developer all the possible SLOs and SQOs, which may partly incorporate default, 
aggregated or overwritten values, depending on the values resulting from the contracted CSPs. This 
resulting MCSLA serves as the contract between the developer and the users of the application. 
Additionally, the MSCLA will be used for monitoring purposes. 

  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 17 of 69 

www.decide-h2020.eu  

3 Alternative workflows 

As explained in section 2.2, DECIDE covers the extended DevOps philosophy for multi-cloud 
applications. This requires supporting a complete workflow from the design of the multi-cloud 
application to its deployment and continuous adaptation. This complete workflow was introduced in 
D2.1 section 7 [1] (see D2.1 for a detailed description). 

 

Figure 4. DECIDE workflow [1] 

This section introduces on one hand the details of the redeployment workflow and on the other hand 
it presents alternative workflows that can be supported by DECIDE tools. These are sub-workflows that 
can be supported without executing the entire DECIDE workflow and its corresponding steps. These 
sub-workflows imply starting the workflow from intermediate points. At this stage three further 
different entry points have been identified: OPTIMUS, ACSmI and ADAPT. 

3.1 Re-deployment workflow 

In deliverable D2.1 the whole DECIDE workflow was described. In this section, the details of the re-
deployment workflow are analysed so that the tools involved are aware of the required functionalities 
needed so that the re-deployment workflow can take place. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 18 of 69 

www.decide-h2020.eu  

 

Figure 5. DECIDE re-deployment workflow. 

 

Step 1  A violation that requires a (automatic or not) re-deployment is 
detected 

Involved tools VH (ADAPT) 

Required functionalities VH needs to discriminate if the occurred violation needs a re-
deployment or not. If a re-deployment is needed, VH needs to know if 
this redeployment should be automatic or handled by the developer.  

 

Step 2a The re-deployment process should be handled by the developer 

Involved tools VH (ADAPT) 

Required functionalities VH needs to inform the developer requesting for a “manual” 
redeployment. Then the workflow will be managed by the developer 
through the DevOps framework. 

 

Step 2b The re-deployment process should be automatic 

Involved tools VH (ADAPT) 

Required functionalities VH needs to request OPTIMUS for a new simulation. VH needs to 
monitor the OPTIMUS activities to know when the OPTIMUS activities 
have been finished. 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 19 of 69 

www.decide-h2020.eu  

Step 3 The new deployment schema needs to be written down in the App 
Description. 

Involved tools OPTIMUS 

Required functionalities OPTIMUS needs to write the deployment schema without a 
confirmation from the developer. OPTIMUS when then return the 
status of “simulation finished” to the VH. 

 

Step 4 The new CSP offerings need to be contracted.  

Involved tools ACSmI contracting/VH (ADAPT) 

Required functionalities VH needs to give the flow to ACSmI contracting. ACSmI contracting 
needs to contract the new CSPs offerings. This process can be automatic 
or may require information form the developer for the contracting.. 
Once finished the contracting process the VH should be notified. 

 

Step 5 The MCSLA needs to be established   

Involved tools MCSLA editor/VH (ADAPT) 

Required functionalities VH needs to give the flow to MCSLA editor, and the MCSLA needs to be 
established. If the old MCSLA can be maintained, the process can be 
automatic (the MCSLA editor automatically checks if the old one is still 
valid). If a new MCSLA needs to be defined due to the constraints of the 
new deployment schema, the developer needs to validate this new 
MCSLA. Once finished, the VH should be informed. 

 

Step 6 The multi-cloud application needs to be deployed into the new 
contracted CSPs.   

Involved tools ADAPT DO/VH (ADAPT) 

Required functionalities VH needs to give the flow to ADAPT DO so it can deploy the components 
in the new CSPs offerings. 

 

Step 7 The multi-cloud application needs to be monitored   

Involved tools ADAPT (DO and monitoring) 

Required functionalities ADAPT DO requests ADAPT mon to start the monitoring. 

 

Step 8 The old CSPs offerings need to be released but only once the 
application and the data have been successfully ported. 

Involved tools ADAPT (DO) 

Required functionalities ADAPT DO needs to release the old CSPs offerings. 

 

Step 9 The old deployment does not need to be monitored anymore. 

Involved tools ADAPT (DO and monitoring) /ACSmI (monitoring) 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 20 of 69 

www.decide-h2020.eu  

Step 9 The old deployment does not need to be monitored anymore. 

Required functionalities ADAPT DO needs to request to ADAPT monitoring to stop monitoring 
the old deployment. ADAPT monitoring will request ACSmI monitoring 
to stop monitoring the old CSPs offerings. Once finished the ADAPT 
actions, the VH should be informed. Once received the confirmation the 
VH will inform the developer that the redeployment has been 
successfully finished. 

 

Step 10 The contracts from the old CSPs need to be cancelled. 

Involved tools ACSmI (billing)/ADAPT (VH) 

Required functionalities VH requests ACSmI to cancel the contracts form the old CSPs offerings. 
ACSmI needs to cancel the old contracts. The VH needs to be informed 
that ACSmI has cancelled the contracts.  

 

3.2 Starting the workflow from OPTIMUS 

Table 1. Alternative workflow 1: OPTIMUS + ACSmI + ADAPT + MCSLA Editor  

Tools involved OPTIMUS + ACSmI + ADAPT + MCSLA Editor 

Initial requirements The general editor plugin (included in OPTIMUS) needs to create initial 
data for the DECIDE project, as the DevOps framework does in the 
complete DECIDE workflow. 

Sub-workflow 
description  

This sub-workflow starts in the pre-deployment phase. OPTIMUS 
recommends the best deployment schema based on the information 
introduced by the developer and the information contained in ACSmI. 
Once the developer confirms the deployment schema, the MCSLA is 
created and established and the different cloud services are contracted 
through ACSmI. Then the multi-cloud application is deployed by ADAPT 
and is continuously monitored to assess the working conditions of the 
application, based on the established MCSLA. ACSmI also monitors the 
CSP resources contracted. 

Issues to be considered • Credentials management in an Eclipse Plugin. 

• A DECIDE project needs to be created through the Eclipse 
plugin. 

• Link to the git repository. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 21 of 69 

www.decide-h2020.eu  

Tools involved OPTIMUS + ACSmI + ADAPT + MCSLA Editor 

Graphical 
representation of the 
sub-workflow 

 
 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 22 of 69 

www.decide-h2020.eu  

3.3 Starting the workflow from ACSmI 

Table 2. Alternative workflow 2: ACSmI + ADAPT + MCSLA Editor 

Tools involved ACSmI + ADAPT + MCSLA Editor 

Initial requirements The initial data for the DECIDE project need to be created (through the 
DevOps framework). 
NFRs need to be gathered, introduced by the developer (directly in the 
application description).  
ACSmI should provide a UI for the developer to discover cloud services. 

Sub-workflow 
description  

The developer establishes the required MCSLA through the MCSLA 
editor and discovers the required cloud services through the ACSmI. 
The contracting of the selected services is performed through ACSmI, 
and ADAPT deploys the application on the contracted services and 
monitors it based on the established MCSLA. ACSmI also monitors the 
CSP resources contracted. 

Issues to be considered • A DECIDE project needs to be previously created through the 
DevOps framework. 

• Link to the git repository. 

Graphical 
representation of the 
sub-workflow 

 
 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 23 of 69 

www.decide-h2020.eu  

3.4 Starting the workflow from ADAPT 

Table 3. Alternative workflow 3: ADAPT + MCSLA Editor + ACSmI monitoring 

Tools involved ADAPT + MCSLA Editor  ACSmI monitoring 

Initial requirements There has to be a project so the Project Wizard shall be launched from 
the DevOps framework. 
NFRs must be shown to the user to be selected (they will have to be 
monitored by ADAPT Monitoring), in the DevOps Framework. 
The user must insert the characteristics and details of the cloud 
resources where he wants each microservice to be deployed, and the 
app description should be generated. This step will be manual, so the 
user shall be able to select the resources where to deploy the 
components in a human/readably way in the Application Description 
file.  
The user must also insert the values of the SLAs of the selected CSPs, 
and the MCSLA editor should create the composite SLA (step not always 
necessary) 
The developer will have to contract the services himself and provide the 
credentials to ADAPT. 

Sub-workflow 
description  

The developer needs to create the DECIDE project through the DevOps 
framework and select the NFRs. Then he/she needs to introduce the 
data of the contracted cloud services in ADAPT configuration. Once the 
information is completed and the MCSLA is composed through the 
MCSLA Editor, ADAPT will automatically deploy the components and 
start monitoring them. ADAPT monitoring will also need the metrics 
from the resources monitored by ACSmI Monitoring. 

Issues to be considered • A DECIDE project needs to be previously created through the 
DevOps framework. 

• Link to the git repository. 

Graphical 
representation of the 
sub-workflow 

 
 

  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 24 of 69 

www.decide-h2020.eu  

4 Detailed DECIDE integrated architecture  

4.1 DECIDE tools for multi-cloud applications design and development 

4.1.1 NFR editor 

The NFR editor is the component that allows the developers of a multi-cloud application to define the 
non-functional requirements that they want to consider during the development and the operation of 
the application. 

4.1.1.1 Structural description 

The NFR editor supports the developer during the “continuous architecting” phase. NFR editor allows 
to define the relevant NFRs for the multi-cloud application. Based on these defined NFRs ARCHITECT 
can propose specific architectural pattern. The NFR list contains, for the context of DECIDE, the 
following categories: availability, cost, location, security, performance and scalability, but it can be 
extended with new ones when needed. 

The NFR editor also supports the developer in the “pre-deployment” phase for detailing the previously 
selected NFRs. In this step, the NFR editor provides the means for the developer to select the exact 
values for the NFRs that can be quantified (e.g. cost, location) and apply these values to the 
components of the multi-cloud application. 

The main functionalities of the NFR editor are: 

• Provide the available qualitative NFRs, and the means to select them at application level. 

• Provide the available quantitative NFRs, and the means to detail their values at component / 
microservice level. 

• Provide the means to store the selected NFRs (qualitative and quantitative). 

In the next figure, the sub-components of the NFR editor are presented: 

 

Figure 6. NFR editor component diagram 

The NFR editor is composed of the following sub-components: 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 25 of 69 

www.decide-h2020.eu  

NFR editor UI 

This subcomponent provides the graphical user interface of the NFR editor, used both for selecting the 
qualitative NFRs at the continuous architecting phase and for detailing the quantitative values for each 
component. The NFR editor UI is loaded together with the ARCHITECT or OPTIMUS user interfaces. 

NFR registry 

The NFR registry stores the available NFRs to be loaded by the NFR editor UI. This registry is static, and 
it contains the available NFRs and their accepted values. 

NFR editor engine 

The NFR editor engine is the component that manages the different activities to be carried out by the 
NFR editor. This sub-component gets the requests from ARCHITECT and OPTIMUS and triggers the 
different sub-components inside the NFR editor. It also stores the values of the selected NFRs in the 
App Description. 

The external interfaces of the NFR editor are: 

1. Interface with OPTIMUS and ARCHITECT that accepts requests from those two DECIDE 
components to select the NFRs 

2. Interface with App Description that stores the selected values for the NFRs 
3. Interface with DevOps Framework that provides the UI in the integrated DECIDE framework 

In the following diagram, the external interfaces of the NFR editor are shown: 

 

Figure 7. NFR editor external interfaces component diagram 

 

4.1.1.2 Behavioural description 

The interaction between the NFR editor and other components in DECIDE as well as the messages they 
share can be found in the following sequence diagram: 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 26 of 69 

www.decide-h2020.eu  

 

Figure 8. NFR editor sequence diagram. 

1. Select qualitative NFRs: The developer through the DevOps Framework UI (or the UI of the 
NFR editor) selects the corresponding NFRs from the list provided by the NFR editor. 

2. Provide qualitative NFRs: ARCHITECT gets the selected NFRs from the NFR editor. 
3. Select quantitative NFRs: The developer through the DevOps Framework UI (or the UI of the 

NFR editor in the Eclipse plugin version) selects the value for each NFR from the list provided 
by the NFR editor, for each of the micro-services of the multi-cloud application. 

4. Provide quantitative NFRs: OPTIMUS gets the selected values for the NFRs from the NFR editor. 
5. Store selected NFRs: The NFR editor stores the selected NFRs and its values in the Application 

Description, so that they can be assessed during the operation phase of the multi-cloud 
application. 

4.1.2 ARCHITECT 

ARCHITECT supports the developer with the design of a multi-cloud application and the preparation of 
the deployment scenarios by providing and suggesting a set of (multi-)cloud design patterns, which 
should be considered during the application implementation. 

4.1.2.1 Structural description 

By means of the functional requirements, ARCHITECT is decomposed in several functional blocks and 
interfaces. The ARCHITECT component has a set of functional requirements [1] that can be summed 
up in the following functionalities: 

• Provide/ recommend to the user (i.e. the developer) architectural patterns based on his/her 
prioritized NFRs as well as additional information (supplied by the user), with guidelines on 
how to apply them, to which component this needs to be applied and in which order. This 
should be performed through a UI. 

• Provide a repository of relevant multi-cloud patterns. 

Apart from these functionalities, ARCHITECT helps to initiate the development of an application in the 
context of DECIDE. This includes the creation of the DECIDE project artefacts, mainly consisting of the 
application description contained in the code repository. 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 27 of 69 

www.decide-h2020.eu  

 

Figure 9 Components of ARCHITECT 

ARCHITECT consists of three core elements, as depicted in the figure above. A frontend for user 
interaction, the application description manager for dealing with the DECIDE project model, and finally 
the patterns catalogue with the pattern inference engine. 

User Frontend 

The User Frontend is the workflow-controlling component of ARCHITECT. In the current 
implementation of DECIDE tool chain, ARCHITECT is integrated as an Eclipse IDE and the User Frontend 
component provides the mechanism how the ARCHITECT component is plugged in. Its main task is the 
interaction with the developer by providing the necessary user interface elements to collect and 
maintain all the application information and to enable the use cases that are described in the next 
section. An alternative UI is provided in the DevOps framework as part of its Dashboard with the same 
functionality.  

Application Manager 

This component is responsible for a convenient abstraction layer for the information model of the 
DECIDE application. It manages all application information in a transparent manner. That means, it 
encapsulates and hides the technical details (the application description is encoded and stored as a 
JSON structure inside a code repository).  

Patterns 

This element contains a catalogue of patterns, NFRs and their relationships. The contained information 
can be updated with additional information and patterns over time. The patterns catalogue provides 
functions that allow the inferring of patterns based on a given set of NFRs and, optionally, the 
suggestion of some fundamental patterns. 

ARCHITECT itself does not provide any external interfaces. The exchange of information between 
ARCHITECT and OPTIMUS is taking place via the App Description file. However, the Patterns 
component is implemented as an autonomous library and its functionality is offered as a micro-service 
(Patterns Compendium) that can be accessed by other implementations. This allows an easy 
integration of ARCHITECT in a polyglot environment. ARCHITECT consumes two interfaces, one from 
the NFR Editor and the other from the OPTIMUS component. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 28 of 69 

www.decide-h2020.eu  

NFR Editor 

ARCHITECT utilizes the NFR Editor for collecting the set of defined non-functional requirements from 
the application developer. ARCHITECT expects as return value from the editor the list of NFRs that the 
developer has selected. 

OPTIMUS 

For a manual triggering of the simulation phase, ARCHITECT should be able to call OPTIMUS. The main 
artefact transferred is the Application Description. Depending on the provided interface of OPTIMUS it 
can either be referenced through the code repository or be handed over as a parameter in the API 
method. The result will be returned using the same mechanism. The User Frontend and the Application 
Manager may display the result in the current environment in an appropriate way. 

4.1.2.2 Behavioural description 

Based on the list of the functional requirements [1], several use cases for the developer have been 
identified as shown in the following figure. These are mainly the creation of a new project, a change 
of NFRs and a change of selected patterns of an already existing DECIDE project; Finally, the developer 
or the used CI tool should be able to enter the next DECIDE phase by triggering OPTIMUS for a 
deployment simulation. 

 

Figure 10. Use Cases of ARCHITECT 

The following sequence diagram shows the “Create DECIDE Project” process. 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 29 of 69 

www.decide-h2020.eu  

 

Figure 11 Create new DECIDE Project, sequence diagram. 

1. The developer starts the creation of a new DECIDE project. 
2. The User Frontend requests an initial Application Description from the Application Manager. 
3. The User Frontend shows to the user a form that requires the general information about the 

application, e.g. which micro-services it contains and how they are related to each other and 
to the application in general. 

4. The User Frontend shows to the user the NFR Editor, where she can select a set of prioritized 
NFRs. The NFR Editor returns to User Frontend with the selected list of NFRs. 

5. Based on the selected NFRs and the additional application information, a list of patterns is 
suggested to the developer. This list contains both fundamental and inferred patterns. 

6. The developer is asked to select any patterns from the catalogue that should or must be 
applied to the application design. 

7. After the developer has selected the patterns for the application, the User Frontend finishes 
the creation process by persisting the final Application Description using the Application 
Manager. 

4.2 DECIDE tools for multi-cloud applications continuous integration and 
testing 

4.2.1 DevOps framework 

4.2.1.1 Structural description 

The DevOps framework is the entry point to DECIDE. It allows a user to define a new project and modify 
its metadata3, and centralizes de UIs of the different tools and KRs. Besides, the DevOps framework 
will act as the orchestrator of the DevOps workflow, launching the corresponding tool whenever 
appropriate. 

The following figure shows the components of the framework: 

                                                           
3 Project metadata captured form the user: i.e number of microservices, git where the project is located, users, etc.  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 30 of 69 

www.decide-h2020.eu  

 
Figure 12. DevOps framework component diagram 

Creation Wizard 

The Creation Wizard allows a user to introduce basic data about the application. These data include 
the Git’s token and URL where the code is or will be located, the number of microservices, 
programming language, etc. The Wizard includes an NFR editor to indicate the non-functional 
requirements that the project must fulfil along its life-cycle, and that will be considered by the rest of 
the tools. 

DevOps Dashboard 

The Dashboard gives an overview of the status of the DECIDE tools. On one hand, it provides 
information about the CI/CD tools included in the DevOps Framework: Jenkins and SonarQube. On the 
other hand, it displays the most relevant data from the different DECIDE tools, such as the selected 
patterns for ARCHITECT, the result of the simulation for OPTIMUS, and deployment and monitoring 
information from ADAPT. 

DevOps BE 

This component is where the intelligence of the DevOps Framework resides. The backend is in charge 
of administrative tasks, such as user and application management, but is also responsible for triggering 
and coordinating the different DECIDE tools. Besides, the DevOps BE takes care of reading/writing the 
Application Description and creating new projects. 

Jenkins, SonarQube, Vault 

These components correspond to third-party tools that are integrated in the DevOps Framework. 
Jenkins and SonarQube are CI/CD tools, for automatically triggering builds and for code testing. Vault 
is a component for securely sharing sensitive data within DECIDE. 

The DevOps Framework communicates with the DECIDE tools at two different levels: at a GUI level, it 
integrates the graphical interfaces of the tools, which, for some tools, is done through iframes, while, 
for others, the Dashboard builds their GUIs. At information level, the Dashboard shares data with the 
different tools following two strategies: the Application Description and direct API invocation. 

The following figure shows the aforementioned communications: 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 31 of 69 

www.decide-h2020.eu  

 

Figure 13. DevOps Framework interfaces diagram 

4.2.1.2 Behavioural description 

The behaviour of DevOps Framework tool can be described as follows: 

1. The DevOps Framework provides a graphical interface for a user to introduce information 
about the application and its microservices. When that information is complete, it updates the 
Application Description with it. It also configures the tools for continuous development, 
integration and testing according to the provided application information. 

2. ARCHITECT, based on the Application Description, generates a list of recommended patterns, 
which then sends back to the DevOps Framework to be displayed. 

3. While the development, integration and testing processes are taking place, the DevOps 
Framework receives the information reported by the corresponding tool and displays them in 
the UI. 

4. It also sends OPTIMUS an order to start a new simulation, either after a direct instruction from 
the user or as a result of a violation during ADAPT’s monitoring process. 

The following figure shows these communications: 

 

Figure 14. DevOps Framework sequence diagram 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 32 of 69 

www.decide-h2020.eu  

4.3 DECIDE tools for multi-cloud applications (pre) deployment 

4.3.1 OPTIMUS 

4.3.1.1 Structural description 

The main functionalities in OPTIMUS are: 

• Multi-cloud application classification. This functionality will include the classification of the 
components that form the multi-cloud application (computing, computing IP, storage 
persistency, storage DB) [9]. For this purpose, the profiling of the multi-cloud application has 
to be considered as an input. This classification will be based on the information provided by 
the developer and the information stored in the general applications profiling repository. 

• Theoretical deployment generation. Once the classification is made, and the NFRs gathered, it 
will perform a process where it obtains a theoretical schema for the deployment. This schema 
will be composed of generic types of CSPs, associated to the types set to the micro services. 
With these generic types of CSPs suitable for the components, a request will be made to the 
corresponding service of ACSmI. This functionality requires the “CSP modelling” functionality 
to be available.  

• Simulation. The combination of the different possibilities of deployment, considering the 
theoretical deployment and the sorted list of CSPs (from ACSmI) that suit them, will be ranked 
in order to select the best ones. The five best schemas will be built and shown to the developer 
to confirm and select the one desired. 

The figure below shows the components and sub-components that will support the listed 
functionalities: 

 

 

Figure 15. OPTIMUS component diagram 

Application classification 

The input for this classification task will come from the developer (the UI will show information to him 
to complete and confirm), and it will be matched with the information stored about types of multi-
cloud applications, and the characteristics associated to each of those types. The output will be stored 
into the Application description element.  

Theoretical deployment generation 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 33 of 69 

www.decide-h2020.eu  

The Deployment Types repo will contain information about the micro-services types and the CSPs on 
which they could be theoretically deployed. The maintenance of this repo will be performed by the 
Deployment types management module. 

Taking as input the multi-cloud application classification (micro-services) and the application’s NFRs, 
the theoretical deployment generation component will access the Deployment Types repo to obtain 
the set of CSP offerings that can be used for its deployment. Once it has all the information, it will 
create a list of possible CSP offerings for each micro-service.  

Simulation 

The entry for the combination process will be the information about the different possibilities existing 
for the deployment. The algorithm will perform a combination of all these possibilities, using the 
different CSP offerings available for each micro-service. These combinations will be sorted from the 
best of them to the worse. An output with the five best deployments will be created.  

The best option for the deployment could be selected and confirmed by the developer through the 
OPTIMUS UI, and stored into the Application description element as well as into the historical repo 
managed by the APP CONTROLLER.  

 

 

Figure 16. OPTIMUS external interfaces component diagram 

4.3.1.2 Behavioural description 

The behaviour of OPTIMUS tool, and the interchanged data among the different actors in this part of 
the DECIDE workflow, is shown by the picture below: 

 

Figure 17. OPTIMUS Sequence diagram 

The messages among OPTIMUS and the rest of tools are: 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 34 of 69 

www.decide-h2020.eu  

1. App Data: The first information about the application is provided by the user, and requested 
by the General Editor included in the ARCHITECT UI. 

2. App Description Info: Once ARCHITECT has suggested the most suitable patterns, the related 
information is stored as part of the Application Description and OPTIMUS will have access to 
it. 

3. Quantitative NFRs: The NFRs indicated by the user are an important information to obtain a 
proper classification and the best theoretical deployment for the application. 

4. Components info: The developer or user has already developed the application or has a 
detailed design about it. OPTIMUS requires additional information about the micro-services 
that the application is composed of.  

5. Proposed classification: OPTIMUS IU presents the user the results of the application 
classification. 

6. Accepted Classification: The user, through OPTIMUS UI, accepts the classification made. 
7. Trigger Deployment simulation: When ADAPT VH identifies a violation, a new redeployment 

simulation is triggered by requesting OPTIMUS and sending it the information about the 
violation 

8. CS Discovery petition: OPTIMUS asks to ACSmI for a list of CSP offerings that fulfill the 
requirements that the user and the classification process have established.  

9. CSP offerings sorted list: ACSmI sends OPTIMUS a list whose first element is the CSP that best 
fits the non-functional requirements. 

10. Ranked Deployment Schemas: After OPTIMUS creates the schemas for the deployment, based 
on the information sent by ACSmI, it will present the five best of them to the user as a ranking 
(including the NFRs fulfillment for every schema) and he or she will  select the schema to be 
used. 

11. Accepted  deployment Schema: The schema selected by the user, the best schema presented 
by OPTIMUS. 

12. Best Deployment Schema: This output is the global result from OPTIMUS. It will be stored into 
the application description element and into the historical repo of selected schemas by the 
App controller. 

4.3.2 Application controller 

The Application Controller will assist in managing the intelligence regarding the current and historical 
deployment topology. The aim of this functionality is to mitigate reusing deployment topologies that 
were faulty or inadequate in the past. 

More detailed information about the implementation of the Application Controller can be found in 
D3.10 [10]. 

4.3.2.1  Structural description 

The following requirements have been elicited in the project for the Application Controller [1]; these 
are translated below in Figure 18 as functional components. The requirements can be summed up in 
the following functionalities:  

• Holding the intelligence of the different deployment configurations that the multi-cloud 
application has had in its operation time. Storing these deployment configurations will allow 
avoiding those configurations that resulted problematic in terms of security, performance or 
legal awareness. 

• Maintain an interface to OPTIMUS in order to receive the deployment configuration chosen to 
be stored. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 35 of 69 

www.decide-h2020.eu  

 

Figure 18. Component Diagram for Application Controller 

Furthermore, it stores the deployment history in the code repository where the Application 
Description is also stored. 

The deployment history will include meta-data regarding the deployment configuration, such as time 
and date of deployment, the current status, information on the microservice, CSP data and information 
regarding any SLA violations. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 36 of 69 

www.decide-h2020.eu  

4.3.2.2 Behavioural description 

 

Figure 19. Sequence Diagram for writing and reading deployment configuration 

The sequences performed for reading and writing to the deployment history are as follows: 

1. Once a successful deployment has taken place, OPTIMUS registers the current deployment 
configuration with the Application Controller component. The information to be registered is 
described above and is specified in the meta-data model (see annex 1 for the meta-model 
information). 

2. The Application Controller through the History Manager sub-component will update the 
existing file that holds the deployment history in the code repository. In the case that the file 
does not exist, the Application Controller component should create it. 

3. If an SLA violation takes place, this is reported and the file is updated accordingly (same process 
as prior step). 

4. In the case of a new simulation phase, OPTIMUS shall read from the deployment configuration 
history through the History Manager of the Application Controller component. 

5. The History Manager supplies in turn OPTIMUS with the information needed in order to 
evaluate which deployment topology is adequate. 

4.3.3 ACSmI 

4.3.3.1 Structural description 

The Advanced Cloud Service (meta-) intermediator (ACSmI) will provide a cloud services store where 
discovery, contracting, managing and monitoring different cloud services. ACSmI will provide the 
means to assess continuous real-time verification of the cloud services non-functional properties 
fulfilment and legislation compliance enforcement. ACSmI will also provide means for Cloud services 
endorsement from different CSPs.  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 37 of 69 

www.decide-h2020.eu  

These are the main functionalities envisioned: 

• Endorse a cloud service into the ACSmI. ACSmI will allow registering services. This can be 
performed by the CSP itself, by the multi-cloud application operator or by the ACSmI 
Administrator. The registry of each service should cover the different defined terms to model 
the CSPs and their services. This will allow the discovery of the services from the service 
registry. 

• Discover and benchmark services. ACSmI provides means to indicate which are the 
requirements (functional and non-functional) that the discovered services should fulfil.  ACSmI 
will discover, from the services stored in its registry, the most appropriate ones for that set of 
requirements. Then, from the set of discovered services, ACSmI will prioritize these services in 
terms of the fulfilled requirements which will be passed to OPTIMUS as a short list. The list will 
include, additionally, the degree of fulfilment of the NFRs requested by the user.  

• Legal compliance. ACSmI provides means to indicate a legal level defined through the 
assessment of legal relevant aspects when initiating a service, in particular in regard to location 
of data, data security level, location of the service provider etc. in order to enable the cloud 
user/developer to assess the legal impact of initializing and operating the proposed service. 

• Contract services. This functionality will allow dealing with the activities related to the 
contracts within the ACSmI. Depending on the type of services and the CSP, ACSmI will manage 
the contracts in two different ways: 1) ACSmI will facilitate contracting services directly by the 
user to the provider and 2) ACSmI will manage the contract itself with the provider and the 
user. In this last case, ACSmI will have mainly two types of contracts. The first one is the 
contract with the CSP and the other is with the user of the services intermediated by the 
ACSmI. 

• Manage CSPs. This functionality will allow the management of the different connectors to 
facilitate the contracting of the services and to monitor them. This functionality will be in 
charge of informing ADAPT with the required information for the deployment of the multi-
cloud application through the different contracted services. 

• Monitor NFR CSPs and manage the violation alerts. This functionality will monitor the SLA 
(NFRs) of the service offered by the CSPs to detect any violation of the SLAs. Several metrics 
will be measured and assessed to detect if a SLA violation occurs. If the CSP occurs ACSmI will 
carry out three main actions: 1) To inform ADAPT VH that the violation occurs and to provide 
it with all the required information, 2) to register in the ACSmI the information of the violation 
in the corresponding services and 3) to alert the CSP.  

• Monitor the use and bill the user. This functionality will allow calculating the costs generated 
by the user for using ACSmI recommended cloud services, and will provide the corresponding 
invoice. To be able to generate the billing of the contracted services, ACSmI shall monitor the 
use of the different cloud services. 

The high-level architecture of the ACSmI is presented next. The Figure 20 is an updated version of the 
ACSmI architecture presented in D5.1 “ACSmI requirements and technical design” [17].  

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 38 of 69 

www.decide-h2020.eu  

 

Figure 20. ACSmI High Level Architecture 

There are four main components in charge of implementing the core functions of the ACSmI. Next, a 
high-level description of the main components and their corresponding sub-components is presented.  

Service Management (ACSmI Discovery) 

This component is in charge of executing and managing all the operations related to the services 
offered by the ACSmI. Functions like cloud services endorsement, intelligent discovery, legal 
compliance or service operation are covered by this component and the corresponding sub-
components. The sub-modules included in Service Management are: 

a. Service Registry: The service registry is in charge of registering all the information related to 
the services offered by ACSmI. The type of information to be registered will be related to the 
information about the NFRs.   

b. Service Registry Governance: The Service Registry Governance is responsible for managing the 
access and update to the service registry. 

c. Service Discovery: This sub-component is in charge of managing the requests from the 
developers (OPTIMUS) to discover the services. It gathers and processes the request from 
OPTIMUS when discovering services in the ACSmI. 

d. Services Benchmarking: This sub-component will be in charge of comparing the different 
services and providing a shortlist of services based on the degree of the fulfilment of the 
requirements (functional and non-functional). 

a. Legislation Compliance:  The legislation compliance is responsible of assessing the level of 
compliance of the services with respect to the different legislations (i.e. GDPR4  and Code of 
Conduct of CSPs).  The main functionalities of this sub-module are to record of all the relevant 
aspects to enable the evaluations of the legal level, and to check if the information collected 

                                                           
4 General Data Protection Regulation 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 39 of 69 

www.decide-h2020.eu  

from the CSPs accomplishes the requirements set by the applicable legislation, as requested 
by the user when eliciting the NFR.  

Cloud service SLA monitoring 

This module is in charge of the management of the monitoring of the services in the ACSmI. This 
module is composed by different sub-modules to perform the corresponding activities: 

a. Monitoring manager: This sub-component is in charge of managing the different processes 
and requests that need to be triggered in each of the other sub-components of the 
component. ADAPT M manager, will launch the following processes: 

• Start/ Stop monitoring 

• Configure metering component depending on the cloud service to be monitored 

• Monitor CSPs violations  
b. Metering collects metrics and parameters that enables to the SLA Assessment to check if the 

Cloud services are fulfilling the agreed SLAs.  
c. Monitoring repository provides, assists, and automates the storage of parameters and values 

collected by the Metering subcomponent. 
d. SLA Assessment calculates the metrics based on the values retrieved for the parameters by the 

Metering sub module and assesses the compliance of the SLA of the contracted services 
(contracted values vs. real values). 

e. Manage violation. This sub module is in charge of managing that a contracted service is not 
fulfilling the SLA. This submodule is responsible to contact ADAPT VH and to record in the 
ACSmI registry this violation.  

Business Model management 

This core component is in charge of the execution and management of all the operations related to 
Service Contracts in the ACSmI. It also performs all the activities related to the financial operations 
with the different users of the ACSmI. The sub-modules included in this component are:  

a. Contract Manager: It is in charge of the management of the core functions with respect to the 
service contracts. It manages mainly two different types of contracts: 1) contracts between 
the user and the ACSmI and 2) contracts between the CSPs (service providers) and the ACSmI. 

b. Service Contract Registry: This sub-module stores the different contracts existing in the ACSmI. 
c. Billing: It is responsible for monitoring and calculating the total values in order to bill the users 

for the services and to pay the CSPs for the services used. 
d. Data accessor: It is responsible for allowing to the multi-cloud application operator to get 

access to the service. ACSmI shall provide the multi-cloud application operator with details of 
how the access can be obtained and also with the APIs required to contract the services and 
monitor them in different CSPs.  

Security management 

This component is in charge of designing and developing the means to guarantee the secure operation 
of the ACSmI. It includes functionalities such as identity propagation and federated authentication and 
authorization.  This component will manage the user/developer roles in case that the ACSmI is used as 
a stand-alone component. If ACSmI is used together with the DECIDE framework, it only manages the 
CSP role. The sub-modules included in this component are: 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 40 of 69 

www.decide-h2020.eu  

a. Roles Manager: It manages the activities related to the roles in the ACSmI (creation, 
modification, assignment, deletion). 

b. User Manager: It manages the activities related to the users in the ACSmI (creation, 
modification, roles assignment, deletion). 

c. User Registry: It stores all the information associated to the users of the ACSmI. 
d. Authentication Manager: This sub-module performs the authentication of the users and 

manages the access to the different actions/functions of the ACSmI for every user. 

A detailed description and design of each component will be covered in the deliverable D5.3 [16] 
“Intermediate Advanced Cloud Services meta-Intermediator requirements”. 

The following picture presents the interfaces that ACSmI will have with other DECIDE components. 

 

Figure 21. ACSmI external interfaces 

The internal interfaces between the ACSmI components will be detailed in the deliverable D5.3 [16] 
“Intermediate Advanced Cloud Services meta-Intermediator requirements”. 

4.3.3.2 Behavioural description 

The ACSmI behaviour and the interchanged data among the different actors in this part of the DECIDE 
workflow, is shown in Figure 22. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 41 of 69 

www.decide-h2020.eu  

 

Figure 22. ACSmI Sequence Diagram 

Five external components interact with ACSmI: 

1. CSP UI. Each CSP or the ACSmI operator should introduce the information to maintain the 
service registry updated. This component should interact with the service management 
module. This component will also be informed if a non-compliance of the CSP SLA occurred. 
The CSP will have the possibility to ask for the withdrawal of a service from the service registry. 

2. OPTIMUS will request the discovery of services that cover the requirements. Once these 
services are discovered by ACSmI, a message with the services discovered will be sent to 
OPTIMUS. This list of services will be sorted according to the level of compliance with the 
requirements. 

3. MCSLA requests ACSmI the SLO of the NFRs for each of the services to be contracted, and 
ACSmI returns this information. 

4. Application Controller. The Application Controller is used by ACSmI to read which are the 
services to be contracted and it includes the information required by ADAPT. Once the services 
have been contracted, and in a later stage once ADAPT indicates to start the CS monitoring, 
ACSmI uses the Application Controller to obtain the information on which are the services to 
be monitored. 

5. ADAPT. The interaction between ACSmI and ADAPT can occur from three different ways: 1) 
ADAPT alerts ACSmI that the application is deployed and it is time to start the monitoring of 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 42 of 69 

www.decide-h2020.eu  

Cloud services, 2) ACSmI will inform ADAPT that a violation of a SLA of a cloud service has 
occurred and 3) ADAPT will inform ACSmI that it is required to stop the monitoring of the cloud 
services where a concrete application is deployed.    
 

4.4 DECIDE Tools for multi-cloud applications continuous operation 

4.4.1 ADAPT 

4.4.1.1 Structural description 

The main functionalities of ADAPT are the following. 

• Deployment of the multi-cloud application. ADAPT generates and applies the scripts to deploy 
the application’s components (containerized microservices) on one or multiple cloud 
providers, as indicated in the Application Description. The Application Description provides 
detailed information about the microservices and their containers, about the related CSP 
resources to be used, and about the MCSLA to be monitored for both the application and the 
underlying cloud resources. A mandatory prerequisite is that a contract for the needed CSP 
resources has already been signed. 

• Monitoring of the application MCSLA. ADAPT also monitors the status of the deployed multi-
cloud based application and verifies that the non-functional requirements and the SLOs are 
being fulfilled. If a violation of any of the NFRs or SLOs is detected, ADAPT monitoring 
components will generate the proper actions depending on each situation and context: an 
alert saying that the working conditions are not met will be sent to the operator, and the 
“adaptation” process will be launched, through the violation handlers’ component. 

• Adaptation of the multi-cloud application. If the application is of high technology risk, the 
operator will have to confirm the following redeployment configuration proposed by 
OPTIMUS; whereas, in case of low technology risk, the redeployment will be automatic. 

The main components of ADAPT are shown in the following Figure along with their external interfaces. 

 

Figure 23. ADAPT Component Diagram and Interfaces 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 43 of 69 

www.decide-h2020.eu  

Deployment Orchestrator 

The Deployment Orchestrator is responsible for orchestrating the deployment lifecycle (deployment, 
un-deployment, user confirmation, redeployment) for user applications and their components. This 
component gets all its input information from the Application Description. 

Monitoring Manager 

The Monitoring Manager controls the monitoring functionality for the application, according to its 
defined (Multi-Cloud) SLA. It identifies and raises application violations. Monitoring information for 
the CSPs, and related violations, is collected by ACSmI. 

Violations Handler 

The Violations Handler will handle any violation raised either by the Monitoring Manager or by ACSmI, 
regarding respectively the application MCSLA or the CSPs’ NFRs. Violation handling may lead both to 
alerting the operator and to contacting OPTIMUS to trigger a new re-deployment simulation for the 
application, thus starting a re-adaptation process. 

More details on ADAPT architecture can be found in DECIDE deliverable D4.2, to be released at M24 
[21] . 

4.4.1.2 Behavioural description 

The interactions of ADAPT with other tools of the DECIDE framework are shown in the following Figure 
24. 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 44 of 69 

www.decide-h2020.eu  

 

Figure 24.  Interactions of ADAPT with other DECIDE tools 

 

The main steps indicated in the sequence diagram of Figure 24 are the following. 

1. When ADAPT is invoked to deploy an application, it generates a representation of the 
deployment configuration generated by OPTIMUS, and included in the Application 
Description, that can be understood by the used deployment tool (e.g. Terraform). 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 45 of 69 

www.decide-h2020.eu  

2. ADAPT contacts ACSmI to start the cloud resources indicated in the Application Description 
and then configures them. 

3. ADAPT deploys and starts each application’s microservice 
4. ACSmI is then called to initiate CSP monitoring; the proper formulas for aggregating the 

collected metrics at application level are obtained by calling the MCSLA Editor, and the 
application service monitoring is then initiated by ADAPT. 

5. While the application is running, ADAPT collects application metrics from the microservices 
and ACSmI from the underlying CSPs 

6. Live metrics are shown through the DevOps Framework Dashboard 
7. As soon as a violation is identified, the operator is informed and a new redeployment 

simulation is triggered by contacting OPTIMUS 
8. When OPTIMUS finishes recalculating the new deployment configuration, if the application 

level of technology risk is defined as high, the operator must confirm the new redeployment 
configuration before executing the actual redeployment. In the case the level of technology is 
low, no confirmation is needed by the operator and the flow goes automatically to step 9. 

9. In case the operator confirms, then ADAPT is invoked again to redeploy the application 
10. The new configuration is deployed using the same steps as the initial deployment. 
11. The previous configuration is un-deployed, after stopping its monitoring, and the related 

resources are released through ACSmI. 

4.4.2 MCSLA Editor 

The MCSLA Editor provides a tool for the authoring of an MCSLA to be used as a contract between the 
user of the application and the application owner, i.e. developer. Furthermore, the MCSLA is designed 
in a machine-readable format that describes means to monitor and measure the application’s NFRs. 

4.4.2.1 Structural description 

The requirements elicited for the MCSLA Editor in the project are described in D2.1 [1]. These are 
translated into functionalities that reside in components as denoted in the component diagram (see 
Figure 25). The main functionalities for MCSLA Editor are: 

• Provide means for the developer, to support him in the definition of the composite MCSLAs 
(Multi Cloud Service Level Agreement) and the corresponding SLOs (Service Level Objectives) 
of the application and the dependencies and needs on the underlying (combination of) cloud 
services in a machine-readable format for the representation. 

• Provide means to translate the resulting SLA in machine readable format (based on standards) 
as well as a human readable format (to be shared with the end-users, i.e. customers). 

• Provide a UI (through the DevOps framework) for creating/editing SLAs/MCSLA 
 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 46 of 69 

www.decide-h2020.eu  

 

Figure 25. Component Diagram for MCSLA Editor 

The MSCLA Editor is a two-tier architecture represented by the MCSLA Frontend and the backend 
consisting of the MCSLA Service and the MCSLA Core library. 

MCSLA Frontend 

The MCSLA Frontend is a user-facing component that enables the users to create, read, update and 
delete MCLSAs in a visual and human readable manner. The frontend will be integrated into the 
DevOps Framework. The Frontend communicates with the backend and uses defined interfaces for 
accessing available SQOs and SLOs, aggregated values of SLAs as well as existing MCSLAs. Available 
SLOs and SQOs are based on the ISO Standard 19086 [22] and cover terms that are application specific, 
rather than just provider specific. 

MCSLA Service 

The MCSLA Service is in charge of managing the MCSLA and holds its logical information model, it 
communicates with the code repository in order to access the Application Description and receive the 
ids of the cloud providers the multi-cloud application is deployed on.  

The MCSLA Service uses this information from the Application Description to access cloud provider 
related information via the interfaces provided by ACSmI. This information is in turn used to identify 
the SLAs (SLOs) that need to be aggregated and represented in the MCSLA. 

Furthermore, the MCSLA Service is in charge of storing a tagged version of the MCSLA in the code 
Repository for ADAPT to access and be able to monitor the application. For this the metric aggregation 
and evaluation is packaged in a separate core library that can be shared between the editor and the 
ADAPT Monitoring tool. 

MCSLA Core Library 

The MCSLA Core library serves the MCSLA Service with the SLA metrics in order for it to accumulate 
and aggregate the possible values for SLOs depending on the aggregation rules defined in the 
component. 

For each deployment scenario detailed in the Application Description a specific aggregation rule is 
specified and used to aggregate the values. 

 

http://www.decide-h2020.eu/


D2.5 – Detailed architecture v2  Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 47 of 69 

www.decide-h2020.eu  

4.4.2.2 Behavioural description 

 

Figure 26. Sequence Diagram for creating an MCSLA 

The sequences for creating an MCSLA are as follows: 

1. The developer starts the MCSLA Frontend (GUI); this process calls the MCSLA Service in order 
to populate the front end with the necessary values. 

2. As long as the MCSLA Editor as a whole is integrated into the DevOps Framework, it is clear 
which Application Description is applicable at this stage. The Application Description residing 
in a repository will be accessed via the MCSLA Service to retrieve the currently used 
deployment topology, i.e. the CSP Ids.  

3. With the CSP Ids, the MCSLA Service contacts ACSmI in order to obtain the contracted SLAs. 
4. The MCSLA Service then uses the MCSLA Core library to take the necessary measures to 

aggregate the SLOs defined in each SLA. 
5. Once this step is completed, the MCSLA Server populates the frontend with the available 

SLO/SQOs and their possible values. 
6. The developer then uses the GUI to create the MCSLA, which is finally saved by the MCSLA 

Service in the code repository as well as registering it in the Application Description. 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 48 of 69 

www.decide-h2020.eu  

5 DECIDE tool suite deployment  

5.1 DECIDE tools deployment options 

DECIDE tools deployment follows a containerized approach. Each component is containerized (using 
Docker [23] technology) and they can be deployed into different resources. 

In the integration environment, these containerized tools are deployed into AIMES resources (30-35 
GB disk and around 20 containers). 

In the following table the different deployments options and technologies for each of the DECIDE KRs 
is summarized: 

Table 4. DECIDE KRs’ deployment options 

NFR Editor 

Deployment options 
and technologies used 

NFR editor is developed as an Eclipse plugin [24]. This plugin can be 
used along with ARCHITECT and OPTIMUS KRs (which are also 
developed as Eclipse plugins). It can be installed and deployed locally 
(in an Eclipse installation) using the traditional methods for the Eclipse 
plugins (updatesite, etc) or using the respective Docker where an 
installation with an Eclipse with the NFR editor installed is included. 

ARCHITECT  

Deployment options 
and technologies used 

ARCHITECT is composed of three components: 
A. The Cloud Patterns: A Java library that contains all patterns and 

the recommendation algorithm. It can be referenced as maven 
dependency. 

B. The Cloud Patterns Compendium: A wrapper microservice for 
the Cloud Patterns java library providing a convenient REST API. 
The dashboard depends on this microservice for integrating the 
ARCHITECT tool. It is containerized and deployable in a Docker 
runtime. 

C. The Frontend: An Eclipse plugin that can be installed through 
the usual eclipse update mechanism. A public accessible 
update site is currently not available. The eclipse plugin uses 
the Cloud Patterns java library and not the microservice. 

DevOps Framework 

Deployment options 
and technologies used 

The Devops Framework is composed by three main components, the 
front-end platform, the back-end microservices and the database. 

A. Front-end: It is developed using Angular 2+ and Typescript 
technology. The whole component has been containerized 
using Docker. The client directly consumes the API of the 
backend service for authentication, and also the microservices 
provided by the rest of the tools. It also uses HTML, CSS and 
JavaScript to develop the website. 

B. Back-end: It provides a set of microservices which are 
responsible of managing the user authentication process and 
the communication between tools and the application 
description. It has been developed in Java using Spring Boot 
framework, Spring Cloud for microservice communication and 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 49 of 69 

www.decide-h2020.eu  

Spring Security for securing them. This component is also 
containerized using Docker. 

C. Database: This database stores all the information regarding to 
the user, their credentials and associated projects. The 
technology is a NoSQL database, more precisely MongoDB. On 
the other hand, there is also an isolated database focused on 
storing secrets, called Vault. 
 

For the deployment of the component, we have created a docker 
compose configuration file for setting up the environment with all the 
components, and automate the container creation process. 

OPTIMUS 

Deployment options 
and technologies used 

OPTIMUS is composed by two different parts: one as an eclipse plugin 
with the UI and the classification feature, and other part as a REST 
service which can be invoked by other tools. The eclipse plugin can be 
installed locally. 
The technologies used are java, eclipse and swagger for the REST 
service. 

Application Controller 

Deployment options 
and technologies used 

Application Controller is packaged as a java library. Tools that need this 
library can reference it as dependency in a maven or gradle based build 
process. 

ACSmI 

Deployment options 
and technologies used 

ACSmI is composed by four functional components with different 
options for the deployment: 

A. ACSmI Discovery: This component is deployed using five 
different containers:  

a. Frontend. It is responsible to implement the interface 
(UI and API) to allow introducing the requirements for 
the discovery. It is developed using JHipster [25] 

b. Backend. It is responsible to carry out the discovery and 
the endorsement of the services. It implements the 
services API to be used by other tools. It is developed 
using JHipster. 

c. Registry. This component is totally based on the 
JHipster registry, and it is responsible to communicate 
the frontend with the backend. 

d. MySQL Database structure. 
e. MySQL Database data provision. 

B. ACSmI Monitoring: ACSmI monitoring is composed by three 
subcomponents: 

a. Monitoring manager (including assessment and 
violation): Java server (deployed in a Jetty server), 
containerized using docker.  

b. Monitoring repository: Influx DB [26] containerized. 
c. Metering: Telegraf [27], containerized. 

C. ACSmI Contracting: the component is deployed using one 
container. It contains a monolith RoR application (Frontend 
andBackend) and SQLite3 database. 
 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 50 of 69 

www.decide-h2020.eu  

D. ACSmI Billing: the component is at a late stage of design. It is 
expected to use the setup similar to ACSmI Contracting: one 
container with the monolith RoR application and SQLite3 
database. 

ADAPT 

Deployment options 
and technologies used 

ADAPT is composed of three main components with different nature 
and deployment options: 

A. ADAPT DO: ADAPT Deployment Orchestrator (DO) is a 
microservice packaged into a Docker container. The default 
deployment is a centralized one, and can be used to deploy 
multiple applications. However, another deployment option is 
available too, with one ADAPT DO per application, deployed 
together with the application components. This per-application 
deployment option is currently supported by a specific REST call 
that deploys the deployer each time and Application is deployed 
by operating on a special Application Description which 
describes ADAPT DO itself. 

B. ADAPT monitoring: ADAPT monitoring is composed by four 
sub-components which forms the ADAPT monitoring stack. 

a.  ADAPT monitoring manager: Java server (deployed in 
a Jetty server), and containerized using docker. 

b. ADAPT monitoring data storage and aggregation: Influx 
DB [26] containerized. 

c. ADAPT monitoring UI: Grafana [28] containerized. 
d. ADAPT monitoring data collection: Telegraf [27], 

containerized. 
ADAPT monitoring is deployed once and used to monitor 
several applications. It is a centralized component. 

C. ADAPT VH: It is an intermediate microservice which interacts 
with ADAPT monitoring manager the ACSmI monitoring, when 
they detect a new violation in the SLAs. It is developed in Java 
using the Spring framework. It is also included in a Docker 
container 

MCSLA Editor 

Deployment options 
and technologies used 

The MCSLA Editor is composed of two deployable components and one 
java library: 

A. mcsla-core 
A java library for aggregation end evaluation of service level 
agreement (SLA) metrics. The tools that need this library 
can reference it as a dependency in a maven or gradle 
based build process. 

B. mcsla-service 
A microservice that serves as backend. It is containerized 
and deployable in a Docker runtime. 

C. mcsla-ui 
A front end implemented as single page application (SPA) 
on top of the mcsla-service backend. The component 
serving this SPA is containerized and deployable in a Docker 
runtime. 

 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 51 of 69 

www.decide-h2020.eu  

5.2 Information exchange between DECIDE tools 

The mechanisms supporting interoperability and information exchange among the different 

components of the tool-suite are envisioned as follows: 

• Information exchange through the Application Description: The Application Description is the 
main mechanism to share information between Key Results, tools and components in DECIDE. 
The Application Description is a structured JSON file containing all the relevant information 
about the current status of the multi-cloud application, focusing on the information that is 
relevant for the different DECIDE Key Results, tools and components. More information about 
the current version of the App Description is included in the Annex 1.  

• Information exchange through the DECIDE DevOps Framework: DECIDE DevOps Framework, 
will also support interoperability among DECIDE Key Results, tools and components. It 
integrates components at two levels: 

o At GUI level, all the KR’s graphical interfaces are integrated in the DevOps Framework. 
For some of the tools, the DevOps Framework builds their GUI with the information 
obtained calling the tool’s API. For some others, the tool provides an iframe that is 
embedded straight in the DevOps Framework.  

o At information level, exchange through direct API invocation. This approach is suitable 
when a direct message exchange is required between two DECIDE components. 
Besides, some of the information shared amongst KRs is sensible data, for which the 
Application Description is not the best mechanism. For this type of data, the DevOps 
Framework integrates Vault, a component whose goal is enabling secure sharing of 
secrets. 

Interactions between components within the DECIDE tool-suite could be driven by: 

• User interactions: When a user requests a DECIDE component. This is done through the UI of 
the tool itself or the integrated UI (DevOps Framework). 

• Task internal transactions: When a DECIDE tool requests information from another DECIDE 
tool (one component invokes another component, or the invocation is done through the 
DevOps framework).  

  

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 52 of 69 

www.decide-h2020.eu  

6 Conclusions  

This document provides a detailed description of the entire DECIDE global architecture, providing a 
conceptual, functional and interoperable representation.  

The combination of DECIDE Key Results and related tools and components supports the extended 
DevOps approach proposed, from the design of the multi-cloud applications to the operation and 
monitoring of their working conditions. 

The document also provides a deeper analysis, both structural and behavioural of each DECIDE Key 
Result identifying message exchange dependencies, dependencies through required and exposed 
interfaces, and the timeline activities conducted by the tools. This in-depth analysis has enabled an 
earlier identification of potential misalignments between the conceptualization and the technical 
design of the different tools. These misalignments where identified and addressed during the 
specification of the first version of this architecture [2], and solved and the solutions proposed 
translated to the current conceptual and technical design (by their respectively work package tasks) 
and also to the corresponding prototypes implemented.  

This detailed architecture also enabled the final agreement on the work products produced and 
consumed by each tool, and the agreement of the interoperability requirements between the DECIDE 
Key results, tools and components. 

Additionally, this document addressed the challenge of supporting the deployment of the DECIDE tool-
suite and the key results separately. In order to support several approaches (that is the deployment of 
the tools on their own and also several tools together) the containers approach has been adopted.  

The architecture, deployment possibilities and interoperability requirements and mechanisms 
presented in this document cover the ideas, discussions and summarizes the technical decisions taken 
by the DECIDE partners until month 23 of the project. The architecture presented in this document will 
be implemented in the different intermediate and final prototypes of the KR results to be implemented 
in the different technical Work Packages. 

  

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 53 of 69 

www.decide-h2020.eu  

7 References 

 

[1]  DECIDE consortium, "D2.1 Detailed requirements specification," 2017. 

[2]  DECIDE consortium, “D2.4-Detailed architecture v1,” 2017. 

[3]  DECIDE Consortium, “D2.6-Initial DECIDE DevOps Framework Integration,” 2018. 

[4]  DECIDE Consortium, “D3.7-Initial DECIDE OPTIMUS,” 2017. 

[5]  DECIDE Consortium, “D3.10-Initial multi-cloud native application controller,” 2017. 

[6]  DECIDE Consortium, “D3.11-Intermediate multi-cloud native application controller,” 2018. 

[7]  DECIDE Consortium, “D3.13-Initial multi-cloud native application composite CSLA definition,” 
2017. 

[8]  DECIDE consortium, “D3.14-Intermediate multi-cloud native application composite CSLA 
definition,” 2018. 

[9]  DECIDE consortium, “D3.4. Initial profiling and classification techniques,” 2017. 

[10]  Decide Consortium, “D3.10 Initial multi-cloud native application controller,” 2017. 

[11]  DECIDE consortium, “D4.4-Initial multi-cloud applicatin deployment and adaptation,” 2017. 

[12]  DECIDE consortium, “D4.5-Intermediate multi-cloud application deployment and adaptation,” 
2018. 

[13]  DECIDE consortium, “D4.7-Initial multi-cloud application monitoring,” 2017. 

[14]  DECIDE consortium, “D4.8-Intermediate multi-cloud applicatin monitoring,” 2018. 

[15]  DECIDE consortium, “D5.2-Initial Advanced Cloud Service meta-Intermediator (ACSmI),” 2017. 

[16]  DECIDE Consortium, “D5.3-Intermediate Advanced Cloud Service meta-Intermediator (ACSmI),” 
2018. 

[17]  DECIDE Consortium, "D5.1 ACSmI requirements and technical design," 2017. 

[18]  DECIDE Consortium, “D3.1-Initial architectural patterns for implementation, deployment and 
optmization,” 2017. 

[19]  L. Riungu-Kalliosaari, S. MakinenSimo, L. . E. Lwakatare, T. Männistö and J. Tiihonen, “DevOps 
Adoption Benefits and Challenges in Practice: A Case Study,” 2016.  

[20]  J. Alonso, M. Escalante, L. Farid, M. J. Lopez, L. Orue-Echevarria and S. Dutkowsky, “Towards 
Supporting the Extended DevOps Approach through Multi-cloud Architectural Patterns for 
Design and Pre-Deployment,” in SE-CLOUD 2018, 2018.  

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 54 of 69 

www.decide-h2020.eu  

[21]  DECIDE Consortium, "D4.2 Intermediate DECIDE ADAPT Architecture," 2018. 

[22]  International Organization for Standardization, “ISO/IEC DIS 19086-2 Information technology -- 
Cloud computing -- Service level agreement (SLA) framework -- Part 2: Metric model,” ISO, 2017. 

[23]  Docker, “Docekr,” [Online]. Available: https://www.docker.com/resources/what-container. 
[Accessed 22 October 2018]. 

[24]  Eclipse Foundation, “Wiki Eclipse,” [Online]. Available: 
https://wiki.eclipse.org/FAQ_What_is_a_plug-in%3F. [Accessed 22 October 2018]. 

[25]  JHipster, “JHipster,” [Online]. Available: http://www.jhipster.tech/. [Accessed November 2017]. 

[26]  Influxdata, “InfluxData (InfluxDB): Time Series Database Monitoring,” [Online]. Available: 
https://www.influxdata.com/. [Accessed October 2018]. 

[27]  Telegraf, "Telegraf is the Agent for Collecting & Reporting Metrics & Data," [Online]. Available: 
https://www.influxdata.com/time-series-platform/telegraf/. [Accessed November 2017]. 

[28]  Grafana Labs, “Grafana,” [Online]. Available: https://grafana.com/. [Accessed 18 October 2018]. 

[29]  DECIDE consortium, “D3.8-Intermediate DECIDE OPTIMUS,” 2018. 

[30]  DECIDE Consortium, “D4.1 Initial DECIDE ADAPT Architecture,” 2017. 

 

 

 

 

 

  

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 55 of 69 

www.decide-h2020.eu  

Annex 1: App Description 

This annex includes the current version of the App Description (M24)5. As explained in section 4, the 
App Description is one of the main means in DECIDE for interoperability between the different 
components. 

This version of the App Description, resulting from Partners’ research and discussions, includes 
relevant information for each of the DECIDE components, with a brief description for each field. Please 
note that the Application Description definition has evolved since the first data model shown in the 
DECIDE deliverables D2.1 [1], D2.4 [2] and it is still evolving in parallel with the design and 
implementation iterations. 

Table 5. Application Description model 

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

id 
 

 String 1 Unique identifier for the 
Application Description 

DevOps 
Framework 

name  
 

 String 1 Name of the application DevOps 
Framework 

consulJ
oinIp 
(New) 

  String 1 Address of the master 
Consul (service registry) 
node 

TBD: it will be 
the address of a 
node running 
ADAPT 

descript
ion 

  String 1 Textual description of 
the application 

DevOps 
Framework 

version    String  Indicates the version 
number of the app 
description "schema", 
for compatibility 
purposes 

DevOps 
Framework 

highTec
hnologi
calRisk 

  Boolean 1 Indicates if the 
application has high 
technological risk: 
confirmation for 
(re)deployment is 
needed 

DevOps 
Framework 

jenkins
Endpoi
nt 
(NEW) 

  String 1  DevOps 
Framework 

jenkins
Token  
(NEW) 

  String 
(uri) 

  DevOps 
Framework 

nfrs 
(NEW) 

  Array of 
Objects  
(any of 
the 

1..* List of nfrs DevOps 
Framework/Gen
eral editor 

                                                           
5 This version corresponds to the 31st of October 2018, when this document was last updated. The information of the App 
Description is evolving and will change as the technical discussions advance.The updated schema for the application 
description is stored in the private DECIDE software repository: 
https://git.code.tecnalia.com/decide/AppController/blob/master/src/main/resources/application_description.schema.json 

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/decide/AppController/blob/master/src/main/resources/application_description.schema.json


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 56 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

followin
g: 
availabil
ityNfr, 
perform
anceNfr,
Scalabili
tyNfr,Lo
cationNf
r,CostNf
r) 

 availabilit
yNfr 

   Note: this line does not 
indicate a JSON field, 
but only a possible type 
of item in the nfr array 

 

  type 
(NEW) 

String 1..1  DevOps 
Framework/Gen
eral editor 

  tags Array of 
Strings 

0..*  DevOps 
Framework/Gen
eral editor 

  abstractV
alue 
(NEW) 

Enum 1..1 • Low 

• Medium 

• High 

DevOps 
Framework/Gen
eral editor 

  value 
(NEW) 

Number 0..1  DevOps 
Framework/Gen
eral editor 

  unit String 0..1  DevOps 
Framework/Gen
eral editor 

 performa
nceNfr 

   Note: this line does not 
indicate a JSON field, 
but only a possible type 
of item in the nfr array 

 

  type 
(NEW) 

String 1..1  DevOps 
Framework/Gen
eral editor 

  tags Array of 
Strings 

0..*  DevOps 
Framework/Gen
eral editor 

  abstractV
alue 
(NEW) 

Enum 1..1 • Low 

• Medium 

• High 

DevOps 
Framework/Gen
eral editor 

  value 
(NEW) 

Number 0..1  DevOps 
Framework/Gen
eral editor 

  unit String 0..1  DevOps 
Framework/Gen
eral editor 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 57 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

 scalability
Nfr 

   Note: this line does not 
indicate a JSON field, 
but only a possible type 
of item in the nfr array 

DevOps 
Framework/Gen
eral editor 

  type 
(NEW) 

String 1..1  DevOps 
Framework/Gen
eral editor 

  tags Array of 
Strings 

0..*  DevOps 
Framework/Gen
eral editor 

  abstractV
alue 
(NEW) 

Enum 1..1 • Low 

• Medium 

• High 

 

  value 
(NEW) 

Number 0..1  DevOps 
Framework/Gen
eral editor 

  unit String 0..1  DevOps 
Framework/Gen
eral editor 

 locationN
fr 

   Note: this line does not 
indicate a JSON field, 
but only a possible type 
of item in the nfr array 

 

  type 
(NEW) 

String 1..1  DevOps 
Framework/Gen
eral editor 

  tags Array of 
Strings 

0..*  DevOps 
Framework/Gen
eral editor 

  abstractV
alue 
(NEW) 

Enum 1..1 • Single Location 

• Single Country 

• Cross Country 

DevOps 
Framework/Gen
eral editor 

  value 
(NEW) 

Array of 
Strings 

0..*  DevOps 
Framework/Gen
eral editor 

 costNfr    Note: this line does not 
indicate a JSON field, 
but only a possible type 
of item in the nfr array 

 

  type 
(NEW) 

String 1..1  DevOps 
Framework/Gen
eral editor 

  tags Array of 
Strings 

0..*  DevOps 
Framework/Gen
eral editor 

  abstractV
alue 
(NEW) 

Enum 1..1 • Low 

• Medium 

• High 

 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 58 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

  value 
(NEW) 

Number 0..1  DevOps 
Framework/Gen
eral editor 

  unit String 0..1  DevOps 
Framework/Gen
eral editor 

schema 
(NEW) 

  Array of 
Objects 

1..* Deployment schema OPTIMUS 

 microserv
ices 

 Array of 
Strings 

1..* Microservices id OPTIMUS 

 csId  String 1 Cloud Services id OPTIMUS 

 index  Number 1  OPTIMIUS 

microse
rvices 

 
 Array of 

Objects 
1..* List of microservices DevOps 

Framework 
/OPTIMUS  

id  String 1 Unique Identifier for the 
microservice 

DevOps 
Framework 
/OPTIMUS  

name  String 1 Human readable name 
for the microservice 

Creation 
Wizard/OPTIMU
S 

 classificat
ion 
(NEW) 

 String 1 Classification 
specification by 
OPTIMUS 

OPTIMUS 

 depende
ncies 
(NEW) 

 Array of 
strings 

  DevOps 
Framework/Gen
eral editor 

 sourceRe
pository 
(NEW) 

 String 
(uri) 

1  DevOps 
Framework/Gen
eral editor 

 safeMeth
ods 
(NEW) 

 Array of 
strings 

  DevOps 
Framework/Gen
eral editor 

 stateful  Boolean 1 Is the microservice 
stateful or stateless? 

DevOps 
Framework 
/OPTIMUS  

program
mingLang
uage 

 String 1 Type of programming 
language used for 
microservice (hint) 

DevOps 
Framework 
d/OPTIMUS 

 container
Id (NEW) 

 String 1  To be defined 

 container
Ref 
(NEW) 

 String 1  To be defined 

 tags 
(NEW) 

 Array of 
strings 

 Tags to relate NFRs with 
microservices 

ARCHITECT 

 publicIP  Boolean 1 True if the microservice 
has a public IP address 

OPTIMUS 
Classification 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 59 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component  

endpoint
s 

 Array of 
Objects  

1..* List of URI to access the 
services and their 
methods6 

DevOps 
Framework  

 
deployme
ntorder 
(NEW) 

 number 1  DevOps 
Framework 
d/OPTIMUS 

 infrastruc
tureRequi
rements 

 Object 1 Minimum and 
maximum requirements 
for Disk and RAM 

 

  minDisk Integer 1  OPTIMUS 

  maxDisk Integer 1  OPTIMUS 

  minRam Integer 1  OPTIMUS 

  maxRam Integer 1  OPTIMUS 

 detachabl
e_resourc
e 

 Array of 
Objects 

1…* list of elements that are 
going to be used by the 
microservice as for 
example external DB 
services 

OPTIMUS 
Classification 

  id(NEW) String 1  OPTIMUS 
Classification 

  name 
(NEW) 

String 1  OPTIMUS 
Classification 

  db (NEW) Boolean 1  OPTIMUS 
Classification 

  sql (NEW) Boolean 1  OPTIMUS 
Classification 

  classificat
ion (NEW) 

String 1  OPTIMUS 
Classification 

recom
mende
dpatter
ns 
(NEW) 

 
 Array of 

Objects 
0..* List of patterns applied 

to the application 
ARCHITECT 

 
title 
(NEW) 

 String 1 Title of the pattern ARCHITECT 

 
uriRef 
(NEW) 

 String 
(uri) 

1 
 

ARCHITECT 

 positiveI
mpacts 
(NEW) 

 Array of 
Strings 

0..*  ARCHITECT 

 categorie
s (NEW) 

 Array of 
Strings 

0..*  ARCHITECT 

 selected 
(NEW) 

 Boolean 1  ARCHITECT 

                                                           
6 Port numbers in each URI are those exposed by the microservice, the container can be configured to map them to a 
different port number 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 60 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

monitor
ing 
(NEW) 

  Object    

 status 
(NEW) 

 Boolean 1 Monitoring status. If 
monitoring is activated, 
the status is true 

ADAPT 

 urls 
(NEW) 

 Array of 
Strings 
(uri) 

0..* Urls with the ADAPT 
monitoring UI 

ADAPT 

mcsla 
(NEW)  

  Object    

 sla (NEW)  Object 1   

  descriptio
n 

String 1  MCSLA Editor 

  visibility String 1  MCSLA Editor 

  validityPe
riod 

Integer 1  MCSLA Editor 

  coveredS
ervices 

Array of 
Strings 

0..*  MCSLA Editor 

  objective
s 

Array of 
Objects 
7 

0..* The list of service 
objectives as part of this 
SLA 

MCSLA Editor 

 csSlas 
(NEW) 

 Object  Map between cloud 
services and Slas. Keys 
are the cloud service ids 

 

  descriptio
n 

String 1  MCSLA Editor 

  visibility String 1  MCSLA Editor 

  validityPe
riod 

Integer 1  MCSLA Editor 

  coveredS
ervices 

Array of 
Strings 

1  MCSLA Editor 

  objective
s 

Array of 
Objects8 

1  MCSLA Editor 

virtual_
machin
es 

  Array of 
Objects 

0..* Description of the VMs 
that will host the 
containers 

 

 id  String 1  ACSmI/OPTIMU
S 

 cspName  String 1 Name of the CSP 
providing this VM 

ACSmI/OPTIMU
S 

 cspId  String 1 Internal UUID for the 
CSP providing this VM 

ACSmI/OPTIMU
S 

 ram  Integer 1 Amount of memory (in 
GB) 

ACSmI/OPTIMU
S 

                                                           
7 This object is described in the next tables 
8 This object is described in the next tables 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 61 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

 cores  Integer 1 Number of cores ACSmI/OPTIMU
S 

 storage  Integer 1 Amount of disk space 
(in GB) 

ACSmI/OPTIMU
S 

 image  String 1 Name of the VM image 
(identifies also the OS 
and its version) 

ACSmI/OPTIMU
S 

 vmSoftw
areId 
(New) 

 String 1 Id of the software 
resource from the 
ACSmI registry. 
Represents the OS and 
version of the VM (e.g. 
“Ubuntu 16.04”) 

ACSmI 

 VmResou
rceId 
(New) 

 String 1 The id of the ACSmI VM 
resource, which 
represents the 
underlying CSP that will 
perform the real 
provisioning 

ACSmI 

 vmRegion
Id (New) 

 String 1 The id of the “Region” 
where the VM will run, 
taken from the ACSmI 
registry (E.g.: Zrh, US 
Standard, …) 

ACSmI 

 instanceT
ypeId 
(New) 

 String 1 The id of the 
“instanceType” which 
represents the 
combination of 
resources allocated to 
the vm (e.g. “2 Total 
cores, 2GB RAM) 

ACSmI 

 keyPairId 
(New) 

 String 1 The id of the keypairs 
needed to access ACSmI 
resources (associated to 
the ACSmI user profile) 

ACSmI 

 openedP
orts 

 Array of 
integers 

  To be defined 

 dockerPri
vateRegis
tryIp 
(New) 

 String 0..1 IP of a Docker private 
registry, which will host 
custom container image 
prepared by a 
developer that are not 
published to the public 
Docker Hub repository. 
Used for configuring the 
VM 

Developer 

 dockerPri
vateRegis

 Integer 0..1 Port of the private 
Docker registry. Used 
for configuring the VM 

Developer 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 62 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

tryPort 
(New) 

 dockerHo
stNodeNa
me (New) 

 String 1 Name of the Docker 
node (referenced by the 
same field in each 
container definition) 

Developer / 
OPTIMUS  

 dockerHo
stPublicIp 
(New) 

 String 0..1 IP address of the Docker 
node (written by ADAPT 
DO, used by ADAPT 
MM) 

ADAPT 

contain
ers 

  Array of 
Objects 

1..* Description of the 
containers that will host 
the microservices 

 

 container
Name 

 String 1 Name of the container Developer 
(DevOps 
Framework) 

 imageNa
me 

 String 1 Name of the container 
image 

Developer 
(DevOps 
Framework) 

 imageTag  String 1 Tag to identify the 
container in the registry 

Developer 
(DevOps 
Framework) 

 dockerPri
vateRegis
tryIp 

 String 0..1 IP of a Docker private 
registry, which will host 
custom container image 
prepared by a 
developer that are not 
published to the public 
Docker Hub repository 

Developer 
(DevOps 
Framework) 

 dockerPri
vateRegis
tryPort 

 String 0..1 Port of the private 
Docker registry 

Developer 
(DevOps 
Framework) 

 dockerPri
vateRegis
tryUser 

 String 0..1 Username to access the 
private Docker registry 

Developer 
(DevOps 
Framework) 

 dockerPri
vateRegis
tryPassw
ord 

 String 0..1 Password to access the 
private Docker registry 

Developer 
(DevOps 
Framework) 

 hostname  String 1 Hostname of the 
container 

Developer 
(DevOps 
Framework) 

 restart  String 1 Attribute indicating the 
restart policy for this 
container (e.g. 
“always”) 

Developer 
(DevOps 
Framework) 

 command  Array of 
Strings 

0..* Comma-separated list 
of commands to be 
passed to the container, 

Developer 
(DevOps 
Framework) 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 63 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

as for the “CMD” 
Dockerfile  specs 

 entrypoin
t 

 Array of 
Strings 

0..* Comma-separated list 
of commands and 
parameter to be passed 
to the container, as for 
the “ENTRYPOINT” 
Dockerfile  specs 

Developer 
(DevOps 
Framework) 

 dockerHo
stNodeNa
me 

 String 1 Name of the VM hosting 
the container 

 

 networks  Array of 
Strings 

0..* This field will trigger the 
creation of one or more  
dedicated Docker 
network(s) on the 
container to allow two 
containers to see each 
other in case it does not 
exist 

 

 volumeM
apping 

 Array of 
Objects 

0..* Mapping of volumes 
from host paths to 
container paths 

Developer 

  hostPath 
(New) 

String 1 Path on the host Developer 

  Container
Path 
(New) 

String 1 Path on the container Developer 

 environm
ent 

 Array of 
Strings 

0..* List of comma-
separated KEY=VALUE 
environment variables 
to be defined before 
starting the container, 
as for the “ENV” 
Dockerfile  specs 

Developer 

 consulKv
Provider
NodeNa
me 

 String 1 Name of the node 
hosting the Consul Key-
Value provider 

(TBD: it will be 
the node 
running ADAPT) 

 addConsu
lService 

 Integer 0..1 Specify whether to 
register the service to a 
Consul service registry 
(enables basic health-
check) 

(TBD: it may be 
enabled by 
default) 

 addConsu
lTraefikR
ules 

 Boolean
(0|1) 

 Specify whether to add 
reverse proxy routing 
rules to the Consul K/V 
store (based on “Host:” 
header) 

Developer 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 64 of 69 

www.decide-h2020.eu  

Field 
name  

Nested 
Elements 

Nested 
Elements 

Type Multipli
city/ 
Default 

Description Responsible 
component 

 consulSer
vicePort 
(New) 

 Integer 0..1 Port number for the 
service to be registered 
in Consul; usually the 
same as endpoints.port 

 

 portMap
ping 

 Array of 
Objects 

0..* List of ports to be 
published by this 
container 

Developer 

  hostPort 
(New) 

String 1 Port to be exposed on 
the host 

Developer 

  Container
Port 
(New) 

String 1 Port exported by the 
container 

Developer 

 hostMap
ping 

 Array of 
Objects 

0..* Optional mapping to 
support a reverse proxy 

Developer 

  Ip (New) String 1  Developer 

  Referenc
edContai
nerName 
(New)  

String 1  Developer 

  Host 
(New) 

String 1  Developer 

 endpoint
s 

 Array of 
Objects 

0..* List of endpoints for this 
container 

Developer 

  protocol String 1 Typically “http”, but can 
be something else 
according to URL syntax 

Developer 

  port Integer 1 The port to which the 
endpoint is bound 

Developer 

  skipRule Boolean 
(0|1) 

0..1 Set to 1 to discard the 
routing rule based on 
hostname (“Host:” 
header) 

Developer 

  container
NameOve
rride 

String 0..1 Overrides the standard 
routing rule based on 
hostname; hence, it 
allows to consider a 
different hostname for 
this service 

Developer 

applicat
ionInsta
nceId 
(New) 

  String 1 Application ID (written 
by ADAPT DO, used by 
ADAPT MM) 

ADAPT 

 
The following tables describe some of the sub-elements of the Application Description model for mcsla 
elements. Table 2 describes the nested elements for the sub-element objectives of the Application 
Description. The MCSLA Editor is responsible for eliciting this information from the user. 

Table 6. MCSLA objectives object description (nested elements for “objectives”) 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 65 of 69 

www.decide-h2020.eu  

Element Name Serviceobjectives 

Description  

attribute -or- 
Element 

Type 
Multiplicity / 
Default 

Definition 

type String 1 If it is an SLO 
or an SQO 

termName String 1 The term 
name of the 
service 
objective, e.g. 
“Availability” 

comment String 1 Some further 
explanation 

violationTriggerRul
es 

Array of Objects 1..* Tracking of 
violation 
events 

metrics Array of Objects 1..* The list of 
metrics for 
this service 
objective    
 

remedy Array of Objects 1..* Some 
optional 
remedy 

    

 

The following table describes the sub-elements nested in the violationTriggerRule sub-element of 
microservice_SLO and microservice_SQO. 

Table 7. Nested elements for violationTriggerRule 

Element Name violationTriggerRule 

Description The general information about the violation trigger rule 

attribute -or- 
Element 

Type 
Multiplicity 
/ Default 

Definition 

violationInterval number 1 
Indicates the monitoring 
frequency for each SLO 

breaches_count number 1 
The count of how many 
breaches have taken place 

 

The following table holds the fields (taken directly from ISO 19086-2 Metric Model [22]) that are nested 
within the metrics field of microservice_SLO and microservice_SQO. The MCSLA Editor is responsible 
for eliciting this information from the user. 

Table 8. MCSLA metric data model for monitoring  

Element Name metrics 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 66 of 69 

www.decide-h2020.eu  

Description The general information about the metric 

attribute -or- Element Type 
Multiplicity / 
Default 

Definition 

descriptor String 0..1 a short description of the 
metric 

id String 1 a unique identifier for the 
metric within a context 

source String 1 the individual or 
organization who created 
the metric 

scale String 
(enumeratedLis
t) 

1 classification of the type 
of measurement result 
when using the metric. 
The value of scale shall be 
“nominal, ordinal, 
interval, or ratio”. SLOs 
shall use either the 
“interval” or “ratio” scale.  
SQOs shall use the 
“nominal” or “ordinal” 
scales. 

note String 0..1 additional information 
about the metric and how 
to use it. 

category String 0..1 a grouping of metrics with 
similar expressions, rules, 
and parameters 

expression Object 0..1 The expression of the 
calculation of the Metric 
and supporting 
information.  An SLO 
metric shall have an 
expression while an SQO 
may or may not have an 
expression (e.g., specified 
using natural language). It 
shall be written using the 
ids to represent 
UnderlyingMetrics, 
Parameters, and Rules. 

parameters Array of 
Objects 

0..* a Parameter is used to 
define a constant (at 
runtime) needed in the 
expression of an Metric. A 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 67 of 69 

www.decide-h2020.eu  

Parameter may be used 
by more than one Metric 
if it is defined using a 
unique ID within the set 
of metrics it is used in. 

rules Array of 
Objects 

0..* a Rule is used to constrain 
a Metric and indicate 
possible method(s) for 
measurement. 

underlyingMetrics  Array of 
Objects metrics 
/ Strings 

0..* a metric element that is 
used within an expression 
element to define a 
variable. The Expression 
shall use the Underlying 
Metric id to reference the 
Underlying metric within 
the expression. 

 

The following table describes the sub-elements nested in expression sub-element. 

Table 9. Nested elements for expression 

Element Name expression 

Description 
The expression of the calculation of the Metric and supporting 
information 

attribute -or- 
Element 

Type 
Multiplicity 
/ Default 

Definition 

id String 1 
a unique identifier (within the 
context of the metric) for the 
expression 

expression String 1 

the expression statement written 
using the ids to represent 
UnderlyingMetrics, parameters, 
and rules. 

expressionLanguage String 1 
the language used to express the 
metric (i.e. ISO80000) 

note String 0..1 
additional information about the 
expression 

unit String 

0..1 real scalar quantity, defined and 
adopted by convention, with 
which any other quantity of the 
same kind can be compared to 
express the ratio of the two 
quantities as a number. 

required 
when scale 
is ratio or 
interval 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 68 of 69 

www.decide-h2020.eu  

subExpression 
Array of 
Expression 
Objects 

0..* 

an associated element of type 
element that is used within the 
expression to define a variable.  
The Expression shall use the 
SubExpression id to reference the 
SubExpression within the 
expression. 

 

The following table describes the sub-elements nested in parameter sub-element. 

Table 10. Nested elements for parameter 

Element Name parameter 

Description 

A Parameter is used to define a constant (at runtime) needed in the 
expression of a Metric. A Parameter may be used by more than one 
Metric if it is defined using a unique ID within the set of metrics it is used 
in. 

attribute -or- 
Element 

Type 
Multiplicity 
/ Default 

Definition 

id String 1 
the unique identifier of the 
parameter 

parameterStatement String 1 
the statement or value of the 
parameter 

unit String 1 the unit of the parameter 

note String 0..1 
additional information about the 
parameter 

 

The following table describes the sub-elements nested in rule sub-element. 

Table 11. Nested elements for rule 

Element Name rule 

Description 

A Rule is used to constrain a Metric and indicate possible method(s) for 
measurement. For instance, an “AvailabilityDuringBusinessHour” Metric 
could be defined with a scope that constrains some piece of a generic 
“Availability” Metric element that limits the measurement period to 
defined business hours. A Rule describes constraints on the metric 
expression.  A constraint can be expressed in many different formats (e.g. 
plain English, ISO 80000, SBVR) 

attribute -or- 
Element 

Type 
Multiplicity 
/ Default 

Definition 

id String 1 the unique identifier for the rule 

ruleStatement String 1 a constraint on the metric 

ruleLanguage String 1 
the language used to express the rule 
in the ruleStatement 

Note String 0..1 additional information about the rule 

 

The following table describes the sub-elements nested in remedy sub-element. 

http://www.decide-h2020.eu/


D2.4 – DECIDE integrated architecture   Version 1.0 – Final. Date: 31.10.2018 

© DECIDE Consortium   Contract No. GA 731533 Page 69 of 69 

www.decide-h2020.eu  

Table 12. Nested elements for remedy 

Element Name remedy 

Description 
The general information about the compensation available to the cloud 
service customer in the event the cloud service provider fails to meet a 
specified cloud service level objective 

attribute -or- 
Element 

Type 
Multiplicity 
/ Default 

Definition 

type String 1 
The type of remedy the cloud 
service provider will be offering the 
cloud service customer 

value Integer 1 
The value of the type of remedy 
offered by the cloud service 
provider 

Unit String 1 The unit for the value offered  

validity Integer 1 The validity period for this remedy 

 

http://www.decide-h2020.eu/

