
D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 1 of 73

www.decide-h2020.eu

Deliverable D2.1

Detailed Requirements Specification

Editor(s): Javier Gavilanes

Responsible Partner: Innovati

Status-Version: Final – v1.0

Date: 31/05/2017

Distribution level (CO, PU): CO

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 2 of 73

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable: Requirement Specification

Due Date of Delivery to the EC: 31/05/2017

Workpackage responsible for the
Deliverable:

WP2 – DECIDE requirements and DECIDE solution
integration

Editor(s): Innovati

Contributor(s):

Juncal Alonso (TECNALIA)
Marisa Escalante (TECNALIA)
María Jose López (TECNALIA)
Lena Farid (FhG)
Lorenzo Blasi (HPE)
Javier Gavilanes (Innovati)
Luis Miguel Silva (Innovati)
Javier Álvarez (Innovati)
Daniel Rodríguez (Innovati)
Gema Maestro (Innovati)
Antony Shimmin (AIMES)

Reviewer(s): Nicola Fantini (CB)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract: This document will contain all the technical functional,
non-functional and technical requirements of DECIDE
DevOps Framework and all the components to be
developed in the context of WP3, WP4 and WP5.

Keyword List: Requirements, functionalities, framework, tools

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://creativecommons.org/licenses/by-sa/3.0/

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 3 of 73

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 29/01/2017 First draft version Innovati

v0.2 28/02/2017 Corrections to the ToC Innovati

v0.3 20/03/2017 First contributions added Innovati

v0.4 25/04/2017 Second round of contributions and
corrections

Innovati, Tecnalia

v0.5 27/04/2017 Annex extended Tecnalia

v0.6 12/05/2017 Third round of contributions and
corrections

All

v1.0 24/05/2017 Corrections after review Innovati

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 4 of 73

www.decide-h2020.eu

Table of Contents

Table of Contents .. 4

List of Figures ... 6

List of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction ... 9

2 Definitions ... 10

2.1 KPIs .. 13

2.1.1 KR1 ... 13

2.1.2 KR2 ... 13

2.1.3 KR3 ... 14

2.1.4 KR4 ... 14

2.1.5 KR5 ... 14

3 Actors .. 15

4 DECIDE DevOps Requirements .. 16

5 Key Result 1 (KR1) Requirements .. 17

5.1 Functional Requirements .. 17

6 DECIDE High-level Functionalities ... 26

7 Integration Analysis ... 28

7.1 DECIDE Framework (KR1) .. 28

7.1.1 Description .. 28

7.1.2 Integration requirements .. 29

7.1.2.1 Development phase .. 29

7.1.2.2 Operation phase .. 31

7.2 DECIDE ARCHITECT (KR2) .. 31

7.2.1 Description .. 31

7.2.2 Integration requirements .. 32

7.2.2.1 Development Phase .. 32

7.3 DECIDE OPTIMUS (KR3) ... 33

7.3.1 Description .. 33

7.3.2 Integration requirements .. 35

7.3.2.1 Development ... 35

7.4 DECIDE ACSmI (KR4) .. 37

7.4.1 Description .. 37

7.4.2 Integration requirements .. 38

7.4.2.1 Development ... 38

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 5 of 73

www.decide-h2020.eu

7.4.2.2 Operation .. 39

7.5 DECIDE ADAPT (KR5) ... 41

7.5.1 Description .. 41

7.5.2 Integration requirements .. 42

7.5.2.1 Operation .. 42

8 Conclusions .. 47

9 References ... 48

Appendices .. 49

Appendix A. DevOps .. 49

A.1. Benefits of DevOps .. 49

A.2. DevOps Principles .. 50

A.3. Extended DevOps Principles .. 52

Appendix B. Tools analysis ... 54

B.1. Phase: Implementation ... 54

B.2. Phase: Integration ... 56

B.3. Phase: Testing .. 66

B.4. Comparison table .. 70

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 6 of 73

www.decide-h2020.eu

List of Figures

FIGURE 1. DECIDE’S GLOBAL WORKFLOW ... 28
FIGURE 2. KR1’S WORKFLOW DIAGRAM .. 29
FIGURE 3. KR2’S WORKFLOW DIAGRAM .. 32
FIGURE 4. KR3’S WORKFLOW DIAGRAM .. 34
FIGURE 5. KR4’S WORKFLOW DIAGRAM .. 38
FIGURE 6. KR5’S WORKFLOW DIAGRAM .. 42
FIGURE 7. APPLICATION DESCRIPTION DATA MODEL ... 43

List of Tables

TABLE 1. DECIDE NFRS ... 10
TABLE 2. DECIDE DEVOPS REQUIREMENTS ... 16
TABLE 3. DECIDE HIGH-LEVEL FUNCTIONALITIES... 26
TABLE 4. KR1 FUNCTIONALITIES... 29
TABLE 5. INTEGRATION REQUIREMENTS OF THE NFR SPECIFICATION MODULE ... 30
TABLE 6. INTEGRATION REQUIREMENTS OF THE (MC)SLA DEFINITION MODULE .. 30
TABLE 7. INTEGRATION REQUIREMENTS OF THE DEVELOPMENT MODULE .. 30
TABLE 8. INTEGRATION REQUIREMENTS OF THE INTEGRATION MODULE .. 30
TABLE 9. INTEGRATION REQUIREMENTS OF THE TESTING MODULE ... 31
TABLE 10. INTEGRATION REQUIREMENTS OF THE APPLICATION CONTROLLER ... 31
TABLE 11. KR2 FUNCTIONALITIES .. 32
TABLE 12. INTEGRATION REQUIREMENTS OF ARCHITECTURAL DESIGN .. 32
TABLE 13. INTEGRATION REQUIREMENTS OF PATTERN RECOMMENDATION ... 33
TABLE 14. INTEGRATION REQUIREMENTS OF CODE OPTIMIZATION ... 33
TABLE 15. KR2 FUNCTIONALITIES .. 34
TABLE 16. INTEGRATION REQUIREMENTS OF MULTI-CLOUD APPLICATION CLASSIFICATION 35
TABLE 17. INTEGRATION REQUIREMENTS OF THEORETICAL DEPLOYMENT GENERATION ... 35
TABLE 18. INTEGRATION REQUIREMENTS OF THE SERVICE DISCOVERY MODULE .. 36
TABLE 19. KR4 FUNCTIONALITIES .. 37
TABLE 20. INTEGRATION REQUIREMENTS OF THE SERVICE DISCOVERY MODULE .. 38
TABLE 21. INTEGRATION REQUIREMENTS OF THE SERVICE CATALOGUE MODULE... 39
TABLE 22. INTEGRATION REQUIREMENTS OF THE SERVICE CONTRACTING MODULE ... 39
TABLE 23. INTEGRATION REQUIREMENTS OF THE CSPS CONNECTORS MODULE ... 39
TABLE 24. INTEGRATION REQUIREMENTS OF CSP MONITORING .. 40
TABLE 25. INTEGRATION REQUIREMENTS OF THE SERVICE USAGE MONITORING MODULE 40
TABLE 26. KR5 FUNCTIONALITIES .. 41
TABLE 27. INTEGRATION REQUIREMENTS OF THE DEPLOYMENT ORCHESTRATOR MODULE 43
TABLE 28. INTEGRATION REQUIREMENTS OF THE SERVICE REGISTRY MODULE .. 44
TABLE 29. INTEGRATION REQUIREMENTS OF THE MONITORING ENGINE MODULE .. 45
TABLE 30. INTEGRATION REQUIREMENTS OF THE MONITORING ENGINE MODULE .. 45
TABLE 31. INTEGRATION REQUIREMENTS OF THE MONITORING ENGINE MODULE .. 46
TABLE 32. INTEGRATION REQUIREMENTS OF THE DEPLOYMENT ORCHESTRATOR MODULE 46

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 7 of 73

www.decide-h2020.eu

Terms and abbreviations

(MC)SLA (MultiCloud) Service Level Agreement

ACSmI Advanced Cloud Service (meta-) intermediator

API Application Program Interface

CCDL Common Development and Distribution License

CSLA Composite Cloud Service Level Agreement

CSP Cloud Service Provider

DoA Description of the Action

EC European Commission

EMS Enterprise System Management

GPL GNU General Public License

GUI Graphical User Interface

HTTP(S) Hypertext Transfer Protocol (Secure)

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IT Information Technology

JVM Java Virtual Machine

KPI Key Performance Indicator

KR Key Result

NFP Non-functional Property

NFR Non-functional Requirement

PaaS Platform as a Service

QoS Quality of Service

RCP Rich Client Platform

REST Representational State Transfer

SDK Software Development Kit

SDLC Systems Development Life Cycle

SLO Service Level Objective

SOLC Systems Operation Life Cycle

UI User Interface

WP Work Package

WTP Web Tool Platform

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 8 of 73

www.decide-h2020.eu

Executive Summary

The purpose of the DECIDE framework (which corresponds to Key Result 1) is to integrate all the
functionalities of the project’s components to be validated in the three use-case scenarios defined in
Work Package 6, and to support the DevOps principles. The main goal of this document is to gather
the requirements that the framework must fulfil to support its functionalities, and the integration
requirements of each component to integrate with it.

DevOps is a set of practices aimed at motivating collaboration, communication and integration
between software developers and IT operators, while automating software delivery and
infrastructure deployment. The framework developed within the DECIDE project must facilitate the
application of the DevOps principles, which are distilled into a series of requirements, such as using a
microservices architecture, support continuous integration, delivery and deployment, or monitoring
metrics and logs.

As mentioned before, one of the goals of the framework is to integrate the different components.
DECIDE is composed of several components or Key Results (KR): the framework itself (KR1),
ARCHITECT (KR2), which provides a set of patterns; OPTIMUS (KR3), which evaluates the best
deployment options; ACSmI (KR4), which monitors the fulfilment of the non-functional properties of
the services; and ADAPT (KR5), which semi-automatically deploys and readapts the applications. All
these components handle different types of data and, in some occasions, exchange data with other
components. This deliverable analyzes the data needs of the KRs in order to achieve a proper
integration.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 9 of 73

www.decide-h2020.eu

1 Introduction

This deliverable aims at obtaining a list of requirements that the KR1 must fulfil, as well as the
integration requirements for the different DECIDE components.

The document starts with a compilation of the key terms used in it, to provide a common
understanding of those terms. The same section also includes the definition of the KPIs that will be
monitored in the project. These KPIs are the mechanism that will be used to measure the level of
accomplishment of the DECIDE.

After describing the main actors that will make use of the DECIDE framework, the document presents
the requirements of the Key Result 1, which come from the objectives set out in the DoA, from an
analysis of the State of the Art on DevOps, and must be validated by the use cases.

The next section contains a table with the high-level functionalities that DECIDE must support, which
have being defined as a collaborative effort among the other WPs and will be used as a starting point
to classify the requirements of each component.

Lastly, in the Integration Analysis section, the data exchanges among the different KRs and within
each KR are studied. For every component a description and a data flow diagram are included,
making a reference to the high-level functionalities that the KR supports. Then, the data exchanges
are detailed and grouped by functionality.

In the appendix a study of the State of the Art on DevOps and an analysis of the different tools that
will be integrated in KR1 can be found.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 10 of 73

www.decide-h2020.eu

2 Definitions

This section contains the definition of key terms used throughout the document, to define a common
language for the consortium and to ensure that every reader interprets those terms in the same way.

 Multi-cloud. Multi-cloud is the use of multiple computing services for the deployment of a
single application or service across different cloud technologies and/or Cloud Service
providers. This may consist of PaaS, IaaS and SaaS entities in order to deliver an end solution.

 NFR. NFR (Non Functional Requirement) is a requirement that specifies criteria that can be
used to judge the operation of a system, rather than specific behaviours. In the context of
DECIDE NFRs that the multi-cloud application should have are defined by the developer from
a closed list of predefined NFRs. These NFRs and their metrics have being defined
collaboratively and they will be implemented in the corresponding tools in different phases,
according to the following table (v1 corresponds to M12, v2 to M24 and v3 to M30):

Table 1. DECIDE NFRs

Release DECIDE NFR

v1 Availability

v1 Cost

v1 Technology risk

v1 State

v2 Security /Legal

v2 Location

v3 Performance

v3 Scalability

 Availability. Availability is the ratio of time a system or component is functional to the total
time it is required or expected to function. This can be expressed as a direct proportion (for
example, 999/1000 or 0.999) or as a percentage (for example, 99.999%).

Availability in DECICE applies in two senses:

1- From the CSP`s side: the Infrastructure Availability on which the particular Cloud/Multi-
Cloud service is running.

But it also concerns the Application as well.

2- From the Application Side: for compliance the NFRs of an application that is running on
those Cloud/Multi-Cloud Platforms, the MCSLAs are also included in the Availability.

NOTE: A factor that must be taken into account in above definition is that most CSPs do not
include maintenance downtime in their Availability Ratios.

 Cost. Total expenses related to the deployment and operation of a microservice in a certain
CSP.

 Technological risk. The technological risk refers to the potential for losses due to
technological differences of the cloud service providers where the components of the multi-

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 11 of 73

www.decide-h2020.eu

cloud application are deployed. In DECIDE application configuration can be classified as low
technological risk if the baseline technology of the source and target cloud service do not
need match (e.g. source is VMWare, target is OpenStack), in which case the application will
be self-adaptive and able to be redeployed automatically, or as high technological risk, in
which case the operator will be informed if malfunctioning occurs and the re-deployment will
have to be performed in a manual way.

 State. State is a term related to the “memory” of a service. Services can be stateful or
stateless. A stateful service stores data between different sessions, so previous actions can
affect present ones, while a stateless service does not store data, every operation is
performed as if it were being done for the first time.

 Security. Security is included in DECIDE as one of the NFR that the developer can set up when
designing the multi-cloud application. In the context of DECIDE security will refer mainly to
the security concerns derived from the location of the application. This will be considered
mainly from the perspective of the GDPR and the implications of the location of the
application and data in different countries/ sites.

DECIDE security will be also analysed from the special needs of certain type of data (i.e.
sensitive data) with respect to confidentiality (encryption/anonymization needs).

 Location. This term refers to the place where the application data is deployed. This is
relevant for the project since different countries have different data management policies.

 Performance. Performance is a term that can be used in several contexts, although generally
it refers to the supervision and measuring of relevant metrics with the purpose of evaluating
resources' efficiency. Within DECIDE, it refers to the measuring of certain parameters to
guarantee the fulfilment of the contracted services.

 Scalability. Scalability is a desirable characteristic in any system or process. It allows for the
manipulation of increasing workloads or increasing data volume, uniformly and leaving
performance unaffected. For DECIDE, scalability is the capacity it will have to let users
increase data volume or number of accesses in a uniform way without performance or
availability loss.

 Reliability. Reliability is an important characteristic for a storage or data transfer service, to
guarantee that the data are not modified or lost on its path from origin to destination. For
DECIDE, reliability is what allows the agents to ensure high availability of the services as well
as data protection and no data loss.

 Microservice. Microservices architecture is an approach to application development in which
a large application is built as a suite of modular services. Each module supports a specific
business goal and uses a simple, well-defined interface to communicate with other sets of
services.

One of the characteristics of the microservices is the resilience. Rather than relying upon a
single virtual or physical machine, components can be spread around multiple severs or even
multiple data centers.

The common definition of microservices generally relies upon each microservice providing an
API endpoint, often but not always a stateless REST API which can be accessed over HTTP(S).

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 12 of 73

www.decide-h2020.eu

MCSLA. A multi-cloud composite service level agreement (MCSLA) is provided by the multi-
cloud application developer and consists of SLOs and SQOs belonging to the CSPs the
application is deployed on and additionally application specific SLOs and SQOs.

 Cloud SLA. A cloud Service Level Agreement (cloud SLA) is a contractual agreement between
cloud service customers and cloud service providers. It is part of a cloud service agreement
and includes service level objectives (SLO) and cloud service qualitative objectives (SQO) for
the covered cloud service(s).

 CSLA. A composite cloud Service Level Agreement (CSLA) is an aggregated view of a number
of SLAs from different CSPs which have been chosen for the deployment of a multi-cloud
application. Aggregation patterns may be used in order to calculate an aggregated value for
SLOs occurring across multiple different CSP SLAs.

 Aggregation pattern. An aggregation pattern is a formalised arithmetic rule that can be used
to aggregate terms coming from different CSP SLAs and resulting in a composite SLA. [1]

 Multi-cloud architectural pattern. The multi-cloud architectural patterns will comprise best
practices and recommendations on how to design and structure the multi-cloud applications
supporting the NFR selected (i.e. componentization through microservices) to guide
architects in software architectural decisions. This guidance will be accompanied by a tool
proposing the most suitable patterns and the patterns themselves (i.e. nuggets of code,
skeleton, etc.) to comply the NFRs and multi-cloud architecture.

 Metric. A standard of measurement that defines the conditions and the rules for performing
the measurement and for understanding the results of a measurement. [2]

 Service Level Objectives (SLO). A Service Level Objective (SLO) describes a specific Quality of
Service (QoS) aspect of a Service Level Agreement (SLA). Each guarantee contained in a SLA
about QoS is expressed by a SLO. Syntactically a SLO is composed of a SLA Term, indicating a
specific aspect of a service (e.g. its availability), and a conditional expression indicating a
measurable constraint on the SLA Term itself.

 Service Qualitative Objectives. A Service Quality Objective (SQO) indicates a high level goal
about the quality of a service.

 Remedy. A compensation offered to the cloud service customer in the event the cloud
service provider fails to meet specific cloud service objectives. A remedy is typically part of an
SLA and is included in its documentation. [2]

 Application Profile. This term refers to the profiling of the multi-cloud application so that the
simulation can be performed. The multi-cloud application has to be profiled and classified
into known stereotypes of components (microservices). Based on those known stereotypes
the simulation process can be performed.

 Deployment Schema (OPTIMUS). The deployment schema is the information about CSPs
that are involved in the best possible deployment taking into account the NFRs, provided by
the development. The schema will associate one CSP to each microservice of the multi-cloud
application. This option for the deployment is the best theoretical option obtained by the
OPTIMUS tool. Based on this Schema, the CONTROLLER will create the script needed for
deploying the whole application, asking the ACSmI for the CSPs that are described in it.

 KPI. KPI (Key Performance Indicator) in DECIDE is a measurable value that demonstrates how
effectively the different WPs and KR are achieving their objectives.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 13 of 73

www.decide-h2020.eu

 Application Description. The Application description is a holistic view, defined by meta-data,
over the properties of an application. It holds properties such as the application name, its
composition, classification, deployment topology, etc.

2.1 KPIs

This section will list the KPIs that will be monitored by DECIDE. KPIs, or Key Performance Indicators,
are the mechanism that will be used in the project to measure the level of accomplishment of the
DECIDE goals. They are classified according to the KR they affect.

2.1.1 KR1

KPI 1.1 - Fully functional

Definition The related KR must be functional.

Measurement
Mechanism

95% of functional requirements to be validated in each version are functioning
well (with no errors). Functional test cases.

KPI 1.2 - 70% requirements covered

Definition The 70% of the functionalities are covered.

Measurement
Mechanism The 70% of the functional requirements initially elicited are covered.

2.1.2 KR2

KPI 2.1 - White paper & Web site

Definition
The multi-cloud architectural patterns are included in a white paper and a web
site.

Measurement
Mechanism

Accepted white paper (conference or journal) and content available in the DECIDE
website.

KPI 2.2 - Use case requirements

Definition
The resulting architectural patterns support the requirements form the different
use cases in DECIDE.

Measurement
Mechanism Some of the patterns are implemented in all the use cases.

KPI 2.3 - Accuracy 70%

Definition
The accuracy of the supporting tool in providing candidate patterns in the three
different phases as well as the order in which they are to be applied is of 70%.

Measurement
Mechanism

The accuracy of the tools proposal with respect to the ones proposed manually by
the use cases is of 70%.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 14 of 73

www.decide-h2020.eu

2.1.3 KR3

KPI 3.1 - Correctness

Definition
Degree of correctness of deployment alternatives compared with real deployment
data.

Measurement
Mechanism

The accuracy of the deployment topologies proposed by OPTIMUS with respect to
the topologies selected by the use cases (manually) is of 70%.

KPI 3.2 - More than 5 topologies

Definition Number of deployment topologies supported more than 5.

Measurement
Mechanism

OPTIMUS output can provide at least 5 different topologies (combination of
deployments configuration) in different simulation processes.

2.1.4 KR4

KPI 4.1 - Fully functional

Definition The related KR must be functional.

Measurement
Mechanism

95% of functional requirements to be validated in each version are functioning
well (with no errors). Functional test cases.

KPI 4.2 - 70% functionalities validated by the use cases

Definition 70% of the functionalities are validated by the use cases.

Measurement
Mechanism

Percentage of functional requirements for the related KR implemented in the use
cases.

KPI 4.3 - Satisfaction by users 90%

Definition Satisfaction recorded by user is 90%.

Measurement
Mechanism

Satisfaction questionnaires for the use cases, with rates of satisfaction of 90% or
more.

2.1.5 KR5

KPI 5.1 - 90% NFR

Definition
Degree of correctness of the re-deployment configuration compared with NFR and
other requirements (at least 90% of NFR).

Measurement
Mechanism

The percentage of the degree of fulfilment of the NFRs in automatic re-
deployment scenarios will be of 90%.

KPI 5.2 - 70% functionalities validated by the use cases

Definition 70% of the functionalities are validated by the use cases.

Measurement
Mechanism

Percentage of functional requirements for the related KR implemented in the use
cases.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 15 of 73

www.decide-h2020.eu

3 Actors

In this section, the actors that will make use of the DECIDE platform are described.

 Salesperson: gathers the first needs of the client, making an offer according to their
requirements. In this phase, technologies to be used are defined, as well as the functional
and non-functional application requirements. The salesman can also make an offer for new
functionalities that the client asked for.

 DECIDE operator: the DECIDE operator fulfils tasks that correspond to both a developer and
an operator. In the traditional sense, the developer develops the offer that was presented by
the responsible of the acquisition project, as well as new functionalities that arise during
development, based on the technologies that the client demanded. On the other hand, the
operator is in charge of ensuring the proper working of the application. However, DECIDE
fosters a DevOps approach, so the distinction between these two actors gets blurred. The
DECIDE operator takes on developer’s responsibilities before deployment and operator’s
responsibilities after deployment.

 Cloud services provider: company that offers network services, infrastructure or business
applications in the cloud. These cloud services are hosted in the company's data centers and
are accessible to users through the Internet.

 End user: the end user of the multi-cloud application, to whom the MCSLA applies.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 16 of 73

www.decide-h2020.eu

4 DECIDE DevOps Requirements

As mentioned in previous sections, one of the goals of the DECIDE framework is to support the
DevOps principles. Thus, this section will list the requirements imposed by the DevOps philosophy.
An in-depth DevOps analysis, from which the aforementioned principles are derived, can be found in
the annex.

Table 2. DECIDE DevOps Requirements

ID Description Source Related
KR

DEVOPS-
REQF1

DECIDE framework must facilitate small and frequent
updates of the code

DevOps
Principles #1

KR1

DEVOPS-
REQF2

DECIDE framework must support the automatic deployment
of the infrastructure required for the development

DevOps
Principles #6

KR1

DEVOPS-
REQF3

DECIDE framework must be able to monitor the deployed
microservices

DevOps
Principles #7

KR5

DEVOPS-
REQF4

DECIDE framework must use microservices DevOps
Principles #2

KR1

DEVOPS-
REQF5

DECIDE framework must support the continuous integration
of the developed apps

DevOps
Principles #3

KR1

DEVOPS-
REQF6

DECIDE framework must support the continuous
deployment of the developed apps

DevOps
Principles #5

KR1

DEVOPS-
REQF7

DECIDE framework must support the continuous delivery of
the developed apps

DevOps
Principles #4

KR1

DEVOPS-
REQF8

DECIDE framework must facilitate the automatic
provisioning of infrastructure

DevOps
Principles #6

KR4

DEVOPS-
REQF9

DECIDE framework must be able to track the issues that
affect the deployed services and use registries to store this
information

DevOps
Principles #7

KR5

DEVOPS-
REQF10

DECIDE framework must provide a way for team members to
communicate with each other.

DevOps
Principles #8

KR1

DEVOPS-
REQF11

DECIDE framework must provide a way for team members to
plan the development process

DevOps
Principles #9

KR1

DEVOPS-
REQF12

DECIDE framework must guarantee the security of the
microservices

DevOps
Principles #10

KR2

DEVOPS-
REQF13

DECIDE framework must support the application of best
practices and design principles during the first phases of the
development

Extended
DevOps #1

KR1

DEVOPS-
REQF14

DECIDE must provide mechanisms to analyze alternative
cloud deployment scenarios and their impact in the NFR of
the application, in the MCSLA and the cost

Extended
DevOps #2

KR3

DEVOPS-
REQF15

DECIDE must support the monitoring of the multi-cloud
application SLA and the SLAs of the underlying cloud
resources

Extended
DevOps #3

KR5

DEVOPS-
REQF16

DECIDE must support the semi-automatic adaptation and
redeployment of the application into new cloud services
when needed based on the assessment of the continuous
monitoring

Extended
DevOps #3

KR5

DEVOPS-
REQF17

DECIDE must support the monitoring of the SLAs of the
underlying cloud resources

Extended
DevOps #3

KR4

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 17 of 73

www.decide-h2020.eu

5 Key Result 1 (KR1) Requirements

The DECIDE framework aims at fulfilling three main goals:

 To support DevOps principles (defined in this deliverable).

 To integrate all the functionalities of the different DECIDE components (developed in Work
Packages 3 to 5) to support the project’s Key Results.

 To be validated in the three use-case scenarios defined in Work Package 6.

Taking this into account, this section will gather all KR1 requirements, functional and non-functional,
that are necessary to fulfil the aforementioned goals.

Furthermore, a list of all the tools needed to support these requirements will be compiled.

5.1 Functional Requirements

Req. ID KR1-REQ1

Req. Short Title Entry point

Req. Description The system must provide the user with an entry point to DECIDE

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Integration

Supported
Functionality of
the DevOps
framework

Integration

Source DoA

Priority High

Req. ID KR1-REQ2

Req. Short Title UI unification

Req. Description The system must unify transparently the UIs from the different KRs

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Integration

Supported
Functionality of
the DevOps
framework

Integration

Source DoA

Priority High

Req. ID KR1-REQ3

Req. Short Title Generic UI

Req. Description The system must provide a generic DECIDE UI

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 18 of 73

www.decide-h2020.eu

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority High

Req. ID KR1-REQ4

Req. Short Title Patterns reception

Req. Description The system must receive ARCHITECT's patterns

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority High

Req. ID KR1-REQ5

Req. Short Title Development environment-Patterns

Req. Description The developer must have access to a development environment with the
received patterns

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority High

Req. ID KR1-REQ6

Req. Short Title Development environment-Configurations

Req. Description The developer must have access to a development environment with

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 19 of 73

www.decide-h2020.eu

preloaded DECIDE configurations

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority High

Req. ID KR1-REQ7

Req. Short Title Code submission

Req. Description The system must allow the developer to submit their code

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source Medium

Priority High

Req. ID KR1-REQ8

Req. Short Title Code versioning

Req. Description The system must be able to version the code submitted by the developer

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority Medium

Req. ID KR1-REQ9

Req. Short Title Dependencies

Req. Description The system must be able to resolve the dependencies of the submitted code

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 20 of 73

www.decide-h2020.eu

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Integration

Supported
Functionality of
the DevOps
framework

Integration

Source DoA

Priority Medium

Req. ID KR1-REQ10

Req. Short Title Compilation

Req. Description The system must compile the code without errors

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority Medium

Req. ID KR1-REQ11

Req. Short Title Testing preparation

Req. Description The system must receive the testing activities that have to be performed on
the code

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Testing

Supported
Functionality of
the DevOps
framework

Testing

Source DoA

Priority Medium

Req. ID KR1-REQ12

Req. Short Title Testing activities

Req. Description The system must be able to perform the received testing activities

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 21 of 73

www.decide-h2020.eu

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Testing

Supported
Functionality of
the DevOps
framework

Testing

Source DoA

Priority Low

Req. ID KR1-REQ13

Req. Short Title Testing results

Req. Description The system must present the results from the testing activities

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Testing

Supported
Functionality of
the DevOps
framework

Testing

Source DoA

Priority Low

Req. ID KR1-REQ14

Req. Short Title Code continuity

Req. Description The system must guarantee the continuity of the code within DECIDE's
workflow

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Integration

Supported
Functionality of
the DevOps
framework

Integration

Source DoA

Priority Low

Req. ID KR1-REQ15

Req. Short Title Code availability

Req. Description The system must make the code available for DECIDE

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 22 of 73

www.decide-h2020.eu

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority Low

Req. ID KR1-REQ16

Req. Short Title Pattern fulfilment

Req. Description The system must guarantee the fulfilment of DECIDE's patterns by the
developer

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Development

Supported
Functionality of
the DevOps
framework

Development

Source DoA

Priority Low

Req. ID KR1-REQ17

Req. Short Title NFR gathering

Req. Description DECIDE DevOps framework must provide support for NFR gathering

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Design

Supported
Functionality of
the DevOps
framework

NFR specification

Source DoA

Priority High

Req. ID KR1-REQ18

Req. Short Title Qualitative NFP

Req. Description The system must support developers establishing qualitative NFP that the

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 23 of 73

www.decide-h2020.eu

application must comply with (i.e. security, location, financial, low/high
technological risk)

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Design

Supported
Functionality of
the DevOps
framework

NFR specification

Source DoA

Priority Medium

Req. ID KR1-REQ19

Req. Short Title Quantitative NFP

Req. Description The system must support developers establishing quantitative NFP that the
application must comply with (i.e. MBTF, availability, response time, lag,
cost, throughout))

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Design

Supported
Functionality of
the DevOps
framework

NFR specification

Source DoA

Priority Low

Req. ID KR1-REQ20

Req. Short Title (MC)SLA editor

Req. Description The system must include a (MC)SLA editor

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Design (pre-deployment)

Supported
Functionality of
the DevOps
framework

(MC)SLA monitoring

Source DoA

Priority High

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 24 of 73

www.decide-h2020.eu

Req. ID KR1-REQ21

Req. Short Title Application controller

Req. Description The system must include an Application Controller

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Deployment preparation

Supported
Functionality of
the DevOps
framework

Current deployment configuration and history

Source DoA

Priority High

Req. ID DEVOPS-REQ1

Req. Short Title DECIDE framework must facilitate small and frequent updates of the code

Req. Description Frequent updates

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Implementation

Supported
Functionality of
the DevOps
framework

Development

Source DevOps Principles #1

Priority Low

Req. ID DEVOPS-REQ4

Req. Short Title Microservices

Req. Description DECIDE framework must use microservices

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Does not apply

Supported
Functionality of
the DevOps
framework

Does not apply

Source DevOps Principles #2

Priority High

Req. ID DEVOPS-REQ5

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 25 of 73

www.decide-h2020.eu

Req. Short Title Continuous integration

Req. Description DECIDE framework must support the continuous integration of the
developed apps

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Integration

Supported
Functionality of
the DevOps
framework

Integration

Source DevOps Principles #3

Priority Low

Req. ID DEVOPS-REQ10

Req. Short Title Communication

Req. Description DECIDE framework must provide a way for team members to communicate
with each other.

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Does not apply

Supported
Functionality of
the DevOps
framework

Does not apply

Source DevOps Principles #8

Priority Low

Req. ID DEVOPS-REQ11

Req. Short Title Planning

Req. Description DECIDE framework must provide a way for team members to plan the
development process

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Does not apply

Supported
Functionality of
the DevOps
framework

Does not apply

Source DevOps Principles #9

Priority Low

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 26 of 73

www.decide-h2020.eu

Req. ID DEVOPS-REQ13

Req. Short Title Design principles

Req. Description DECIDE framework must support the application of best practices and design
principles during the first phases of the development

Phase of Cloud
service life cycle

Does not apply

Phase/subphase

of the DevOps

framework

Development phase/Implementation

Supported
Functionality of
the DevOps
framework

Development

Source Extended DevOps #1

Priority Low

6 DECIDE High-level Functionalities

DECIDE aims at providing a new generation of multi-cloud, services-based software framework. To
achieve that, DECIDE will enable techniques, tools and mechanisms to design, develop, operate and
deploy multi-cloud-aware applications. It will also provide architectural patterns and the necessary
supporting tools to develop and operate following a DevOps approach.

The table below summarizes the high-level functionalities that are required to reach DECIDE’s goals.
These functionalities have been obtained collaboratively, by analyzing the Project Description, the
use cases and the principles of DevOps. They will be used as a starting point to elicit lower level
requirements through an analysis that will take place in the corresponding WP. They are classified
according to the development phase and ordered following the life cycle of application development,
so that traceability between functionalities and requirements can be kept.

Table 3. DECIDE high-level functionalities

Phase Sub-phase Supported functionality Related KR
Related

WP

Development
phase

Design NFR specification KR1 WP2

Development
phase

Design Architectural design
KR2-
ARCHITECT

WP3

Development
phase

Implementation Development KR1 WP2

Development
phase

Integration Integration KR1 WP2

Development
phase

Testing Testing KR1 WP2

Development
phase

Pre-deployment
Application (nodes and communication
included) profiling/classification

KR3-
OPTIMUS

WP3

Development
phase

Pre-deployment Theoretical deployment generation
KR3-
OPTIMUS

WP3

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 27 of 73

www.decide-h2020.eu

Phase Sub-phase Supported functionality Related KR
Related

WP

Development
phase

Pre-deployment CSP modeling
KR3-
OPTIMUS

WP3

Development
phase

Pre-deployment Simulation (deployment)
KR3-
OPTIMUS

WP3

Development
phase

Pre-deployment Cloud services discovery KR4-ACSmI WP5

Development
phase

Optimization Code optimization
KR2-
ARCHITECT

WP3

Development
phase

Design/Pre-
deployment

(MC)SLA definition KR1 WP2

Operation
phase

Deployment
preparation

Manage CSPs connectors KR4-ACSmI WP5

Operation
phase

Deployment
preparation

Cloud services contracting KR4-ACSmI WP5

Operation
phase

Deployment
preparation

Create and update the service
catalogue into the ACSmI

KR4-ACSmI WP5

Operation
phase

Application
deployment

Deployment KR5-ADAPT WP4

Operation
phase

Application
deployment

Deployment KR5-ADAPT WP4

Operation
phase

Application
deployment

Deployment KR5-ADAPT WP4

Operation
phase

Application
deployment

(Deployment) Configuration
management

KR5-ADAPT WP4

Operation
phase

Application
Monitoring

Application MCSLA monitoring KR5-ADAPT WP4

Operation
phase

Application
Monitoring

NFR monitoring KR5-ADAPT WP4

Operation
phase

Application
Monitoring

CSP monitoring KR4-ACSmI WP5

Operation
phase

Application
Adaptation

Handle violations KR5-ADAPT WP4

Operation
phase

Application
Adaptation

Application adaptation KR5-ADAPT WP4

Operation
phase

Application
Adaptation

Application re-deployment KR5-ADAPT WP4

Operation
phase

Deployment
preparation

Current deployment configuration and
history

KR1 WP2

Operation
phase

Application
Monitoring

Monitor the usage of the services KR4-ACSmI WP5

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 28 of 73

www.decide-h2020.eu

7 Integration Analysis

This section aims at analyzing the integration requirements between the different DECIDE
components in terms of data exchanges.

There is one subsection devoted to each KR. Every subsection includes a brief description of the KR, a
summary of its functionalities, a data flow diagram and its integration requirements. The integration
requirements are classified by functionality. For each functionality, the data exchanged by the
component that gives support to said functionality with other components within the KR (internal) or
with other KRs (external) are specified. This data flow is summarized in a table that indicates whether
the data exchange is internal or external, the origin or destination of the data and the data that will
be exchanged.

The following diagram shows DECIDE’s global data flow. A more detailed analysis can be found
below.

Figure 1. DECIDE’s global workflow

7.1 DECIDE Framework (KR1)

7.1.1 Description

DECIDE’s Key Result 1 consists in a DevOps framework for multi-cloud applications. This framework
should support the development and delivery pipeline for multi-cloud applications, provide means to
define the multi-cloud SLAs under which the applications must work, and enable continuous
deployment, integration and quality.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 29 of 73

www.decide-h2020.eu

This Key Result must support the following functionalities:

Table 4. KR1 Functionalities

The figure below shows the workflow that will give support to the listed functionalities:

Figure 2. KR1’s workflow diagram

The following sub-sections will detail the integration requirements of the KR1 and the different
DECIDE components, as well as the integration requirements for the modules within the KR1.

7.1.2 Integration requirements

7.1.2.1 Development phase

7.1.2.1.1 Design

 NFR Specification

The NFR Specification module serves as the interface through which the developer will specify the
non-functional requirements that the application must fulfill, which affects the definition of the
architectural patterns. The module will deliver the NFR to the ARCHITECT KR.

Phase Sub-phase Functionality

Development phase Design NFR Specification

Development phase Design (MC)SLA definition

Development phase Implementation Development

Development phase Integration Integration

Development phase Testing Testing

Operation phase Deployment preparation
Current deployment
configuration and history

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 30 of 73

www.decide-h2020.eu

Table 5. Integration requirements of the NFR Specification module

Inputs

Internal/External Origin Data

External Developer NFRs

Outputs

Internal/External Destination Data

External ARCHITECT NFRs

 (MC)SLA Definition

This module serves as the interface through which the developer will specify the multi-cloud SLAs
agreed with the client, which, as is the case with the NFRs, affects the definition of the architectural
patterns. This module will store the MCSLA in the application description to be accessed by ADAPT.

Table 6. Integration requirements of the (MC)SLA Definition module

Inputs

Internal/External Origin Data

External Developer (MC)SLA

Outputs

Internal/External Destination Data

External ADAPT (MC)SLA

7.1.2.1.2 Implementation

 Development

DECIDE must provide access to a configured development environment (in particular to Eclipse and
Netbean). To achieve that, the KR1 must receive from ARCHITECT the architectural patterns that will
serve for the integration during the whole development cycle. It will also deliver to the KR1’s
integration module the application code.

Table 7. Integration requirements of the Development module

Inputs

Internal/External Origin Data

External ARCHITECT
Architectural
patterns

Outputs

Internal/External Destination Data

Internal
Integration
module

App.
code

7.1.2.1.3 Integration

 Integration

The integration module must perform all the needed integration tasks, such as versioning the code or
resolving dependencies, as well as prepare the code for the rest of the DECIDE workflow. It will
receive the application code from the development module, and provide the testing module with the
integrated application code.

Table 8. Integration requirements of the Integration module

Inputs

Internal/External Origin Data

Internal
Development
module

App. code

Outputs

Internal/External Destination Data

Internal
Integration
module

Integrated
app. code

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 31 of 73

www.decide-h2020.eu

7.1.2.1.4 Testing

 Testing

This module is in charge of performing the tests defined by the developer. It receives the code to be
tested from the integration module and it delivers to DECIDE Optimus tested application code that is
ready to continue the DECIDE life cycle.

Table 9. Integration requirements of the Testing module

Inputs

Internal/External Origin Data

Internal
Integration
module

Integrated
app. code

Outputs

Internal/External Destination Data

External Optimus
Tested
app. code

7.1.2.2 Operation phase

7.1.2.2.1 Deployment preparation

 Current deployment configuration and history

The Application controller is integrated into the Decide Framework and will output its information to
the DECIDE DevOps UI. The Application Controller will receive information on the deployment
configuration from OPTIMUS in order to store this data and make it viewable to the user.

Table 10. Integration requirements of the Application Controller

Inputs

Internal/External Origin Data

External OPTIMUS
Deployment
schema

Outputs

Internal/External Destination Data

internal
Integration
module/
DevOps UI

Current
deployment
and history

7.2 DECIDE ARCHITECT (KR2)

7.2.1 Description

Key Result 2 encompasses the ARCHITECT tool, which consists of a catalogue of architectural
patterns. These patterns serve the optimization, development and deployment of applications to
become multi-cloud aware. The idea is to provide the developers with a set of patterns to apply to
their code.

The figure below shows the workflow that will give support to the listed functionalities:

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 32 of 73

www.decide-h2020.eu

Figure 3. KR2’s workflow diagram

The table below provides a summary of all the functionalities that the KR gives support to.

Table 11. KR2 Functionalities

7.2.2 Integration requirements

In the ARCHITECT, the developer is presented with a set of architectural patterns that are bound to
the NFRs previously selected. The output of the architectural patterns should be seamlessly
integrated with the DECIDE DevOps UI and the developer should be able to integrate this output into
his/her code.

7.2.2.1 Development Phase

7.2.2.1.1 Design

 Architectural Design

During the architectural design phase, the developer is provided with a form or a wizard that elicits
specific information in order to make the next step and recommend patterns.

Table 12. Integration requirements of Architectural design

Inputs

Internal/External Origin Data

External NFR Editor NFRs

Outputs

Internal/External Destination Data

Internal
Pattern

Recommendation
Application
Information

Phase Sub-phase Functionality

Development phase Design Architectural design

Development phase Design Pattern recommendation

Development phase Optimization Code Optimization

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 33 of 73

www.decide-h2020.eu

 Pattern recommendation

Pattern recommendation in the design phase will select a number of patterns that are applicable to
the NFRs entered by the user as well as additional information entered by the user regarding
application properties.

Table 13. Integration requirements of Pattern recommendation

Inputs

Internal/External Origin Data

Internal
Architectural

Design
Information
Application

Outputs

Internal/External Destination Data

Internal
Code

Optimization
Patterns

7.2.2.1.2 Optimization

 Code Optimization

Depending on the selected NFRs specific code optimizations are suggested as patterns for the
developer to introduce into the code.

Table 14. Integration requirements of Code optimization

Inputs

Internal/External Origin Data

Internal
Pattern

Recommendation
Patterns

Outputs

Internal/External Destination Data

External
DECIDE

DevOps UI

Optimization
patterns

(code
nuggets,

code
annotation)

7.3 DECIDE OPTIMUS (KR3)

7.3.1 Description

OPTIMUS deployment simulation tool will be responsible for evaluating and optimizing the non-
functional characteristics from the developer’s perspective considering a set of provided cloud
resources alternatives. OPTIMUS, working with the continuous deployment supporting tool (DECIDE
ADAPT), will provide the best possible deployment application topology, based on the non-functional
requirements set by the developer, automating the provisioning and selection of deployment scripts
for multi-cloud applications.

The main functionalities in OPTIMUS are:

 Multi-cloud application classification. This functionality will include the profiling and
classification of the components that form the multi-cloud application, and also the profiling
of the nodes and communications involved in its deployment. This classification will be based
on the information provided by the developer and the information stored in the general
applications profiling repository.

 Theoretical deployment generation. Once the classification is made, and the NFRs gathered,
it will perform a process where it will obtain a theoretical schema for the deployment. This
schema will be composed of generic types of CSPs, associated to the types set to the micro
services. With these generic types of CSPs suitable for the components, a request will be

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 34 of 73

www.decide-h2020.eu

made to the corresponding service of ACSmI. This functionality requires the “CSP modelling”
functionality to be available.

 Simulation. The combination of the different possibilities of deployment, taking into account
the theoretical deployment and the sorted list of CSPs (from ACSmI) that suit in it, will be
ranked in order to select the best of them. The Schema with the needed information for the
CONTROLLER will be built and shown to the developer to confirm it.

Table 15. KR2 Functionalities

The figure below shows the workflow that will support the listed functionalities:

Figure 4. KR3’s workflow diagram

1
 This functionality is a requirement to be covered before starting the development of the multi cloud

application. It is a previous activity to be done at WP3 but the CSP profile will be used by other KRs, but it is not
a tool itself.

Phase Sub-phase Functionality

Development Pre-deployment Application (nodes and
communication included)
profiling/classification

Development Pre-deployment Theoretical deployment generation

Development Pre-deployment CSP modelling1

Development Pre-deployment Simulation (deployment)

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 35 of 73

www.decide-h2020.eu

7.3.2 Integration requirements

7.3.2.1 Development

7.3.2.1.1 Pre-deployment

 Multi-cloud application classification.

The input for this classification task will come from the developer (the UI will show information to
complete and confirm), and it will be matched with the information in the “General apps Profiling”
repo. The output will be loaded into “Apps classification” repo. This information could be part of the
app description and it will be completed during the whole life cycle.

The “General apps profiling” repo contains the system knowledge about types of multi-cloud
applications, and the characteristics associated to each of those types. Also, it could contain
information about nodes and communication profiling. This information should be related to the
defined CSP types (ACSmI).

Table 16. Integration requirements of Multi-cloud application classification

Inputs

Internal/External Origin Data

External
General

apps
profiling

General
information
about apps

Outputs

Internal/External Destination Data

External
Apps

classification
repo

App
classification

data

 Theoretical deployment generation.

The “Deployment Types” repo will contain information about the microservices types and the CSPs in
which they could be theoretically deployed. The maintenance of this repo will be performed by the
Deployment types management module. At this point of the project, it could be static information
but later it should be updated with data provided by ACSmI.

Taking as input the multi-cloud application classification (microservices) and the Apps NFRs, the
theoretical deployment generation component will access the “Deployment Types” repo to obtain
the set of CSPs that can be used for its deployment. Once it has all the information, it will create a list
of possible CSPs for each microservice, and assign some sort of score for each option.

Table 17. Integration requirements of Theoretical deployment generation

Inputs

Internal/External Origin Data

Internal
Apps

classification
repo

App
classification

data

External
Apps NFRs

Repo
App NFRs

External
Dep. Types

Repo

Types of
theoretical

deployments

External ACSmI
Sorted list of

services

Outputs

Internal/
External

Destination Data

Internal
Theoretical

deployments
management

Theoretical
deployments

Internal Simulation
Possibilities for

deployment

External OPTIMUS
Requirements of

the services

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 36 of 73

www.decide-h2020.eu

 Simulation

The input for the combination process will be the information about different possibilities for the
deployment. The algorithm will perform a combination of all these possibilities, using the different
CSPs that can be used for each micro service. These combinations will have a score for sorting them.
An output with the best deployment will be created.

The best option for the deployment will be selected and confirmed by the developer, and sent (as
schema) to the controller, and, eventually, to ACSmI for contracting the services involved. It has to be
decided when this contracting action will be performed, either at this point or when the
CONTROLLER sends the script to ADAPT.

Table 18. Integration requirements of the Service discovery module

Inputs

Internal/External Origin Data

Internal
Theoretical

deployments
management

Possibilities
for

deployment

Outputs

Internal/External Destination Data

External CONTROLLER

Best
Schema for

app
deployment

External ACSmI
Services to

be
contracted

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 37 of 73

www.decide-h2020.eu

7.4 DECIDE ACSmI (KR4)

7.4.1 Description

Advanced Cloud Service (meta-) intermediator (ACSmI) will provide means to assess continuous real
time verification of the cloud services non-functional properties fulfilment and legislation compliance
enforcement. ACSmI will also provide a cloud services store where developers can easily access
centrally negotiated deals of compliant and accredited applications developed by the software
sector.

There are six main functionalities [3]:

1. Endorse a cloud service into the ACSmI. ACSmI will allow to register services. This can be
done by a CSP, a developer or by the ACSmI Administration itself. The registry of each service
should cover specific terms for modelling the CSPs and their services. This will allow the
discovery of the services from a service catalogue (also named service registry).

2. Discover & benchmark services. OPTIMUS will indicate NFRs of the services, and ACSmI will
discover the services that exist in the catalogue which comply with the NFRs. Then ACSmI will
prioritize the discovered services depending on the level of fulfilment of the NFRs (including
the legal ones) expressed by the multi-cloud application. After that, the discovered services
will be provided to OPTIMUS as a sorted list, indicating the degree of fulfilment.

3. Service Contracting. This functionality will be responsible for handling all the activities
related to the contracts establishment with ACSmI. Depending on the type of services and a
CSP, ACSmI will manage the contracts in two different ways:

a. ACSmI will facilitate the service contracting directly between a user and a provider.
b. ACSmI will manage the contract itself. In this case ACSmI will have mainly two types

of contracts. The first one is the contract with service providers, and the other one
with the user of the services.

4. Manage CSPs connectors. This functionality will enable the management of the different
connectors to facilitate the service contracting and monitoring. The feature will provide
ADAPT with the required information for the deployment of the multi-cloud application onto
different services.

5. Monitor NFR of CSPs and manage the violation alert mechanisms. This functionality will
monitor SLA (NFRs) of the service offered by CSPs and detect violation of the SLA during the
operation of the services. If a violation is detected, an alert to ADAPT will be sent.

6. Usage monitoring and billing. Since commercial cloud providers charge users for resource
consumption, it is important that these charges are handled by ACSmI accordingly: the users
will be charged in the background, provided with usage and billing reports, as well as with
periodical invoices. Thus, the resource utilization will be monitored and users will be charged
accordingly.

Table 19. KR4 Functionalities

Phase Sub-phase Functionality

Development Pre-deployment Cloud Services discovery

Operation Deployment preparation Manage CSPs connectors

Operation Deployment preparation Cloud services contracting

Operation Application monitoring CSP monitoring

Operation Pre-deployment Create and update the service
catalogue into the ACSmI

Operation Application Monitoring Monitor the usage of the services

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 38 of 73

www.decide-h2020.eu

The figure below shows the workflow that will give support to the listed functionalities:

Figure 5. KR4’s workflow diagram

7.4.2 Integration requirements

7.4.2.1 Development

7.4.2.1.1 Pre-Deployment

 Service Discovery and management

The goal of the CSPs service discovery and management is to support the registration and discovery
of services in the ACSmI service catalogue.

The discovery and benchmarking components will take care of the requirements provided by
OPTIMUS or by a user of ACSmI and will discover and benchmark the services that match these
requirements.

OPTIMUS will provide to this component the information (mainly NFRs) of the services that OPTIMUS
requires for carrying out the simulation. ACSmI will provide OPTIMUS with the information of the
services that fulfil the NFRs as well as the degree of fulfilment.

Another aspect of the service management is the Service withdrawal of the service catalogue. If this
service is operated by any application, this module should inform ADAPT to start a new deployment
configuration process.

Table 20. Integration requirements of the Service discovery module

Inputs

Internal/External Origin Data

External OPTIMUS
Requirements

of the
services

Outputs

Internal/External Destination Data

External OPTIMUS
Sorted
list of

services

 Create and update the service catalogue in the ACSmI

This functionality aims to govern the service catalogue in order to maintain it as up-to-date as
possible. Any changes in the service catalogue should be managed by the so-called service registry
governance component.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 39 of 73

www.decide-h2020.eu

This component will provide the interface for endorsing any service to the registry. The component
will be accessed by the service discovery to look for appropriate services.

Table 21. Integration requirements of the Service catalogue module

Inputs

Internal/External Origin Data

Internal
Service

Discovery

Requirements
of the

services

Outputs

Internal/External Destination Data

Internal
Service

Discovery

Services that
fulfilled the

requirements

7.4.2.2 Operation

7.4.2.2.1 Deployment preparation

 Cloud services contracting

The goal of this functionality is to contract the services required by a developer. Thus, OPTIMUS
should provide ACSmI with the services to be subcontracted.

Once ACSmI has contracted the services with the CSP, ACSmI provides the information required to
start service operation. This information should be provided to the Application Controller.

Table 22. Integration requirements of the Service Contracting module

Inputs

Internal/External Origin Data

External
OPTIMUS/
Controller

Deployment
Schema

(info
services to

be
contracted)

Outputs

Internal/External Destination Data

External Controller

Info of the
services for

being
deployed

 Manage CSPs connectors

This functionality will allow:

 Contracting services and monitoring them.

 Managing information required by ADAPT for the (re)deployment of a multi-cloud
application onto the contracted services.

Table 23. Integration requirements of the CSPs connectors module

Inputs

Internal/External Origin Data

Internal
Service

Contracting
Contracted

Services

Outputs

Internal/External Destination Data

External CSP
Data

Accessor

7.4.2.2.2 Application monitoring

 CSP monitoring

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 40 of 73

www.decide-h2020.eu

The goal of the CSP monitoring is to detect if the SLA contracted with the CSP is violated. In case SLA
violation exists, a message to the ADAPT component should be sent. This message should indicate
which service does not comply with the SLA, the type of violation and monitoring metrics if
appropriate.

Table 24. Integration requirements of CSP Monitoring

Inputs

Internal/External Origin Data

Internal
Service

Contracting
Contracted

Services

Outputs

Internal/External Destination Data

External ADAPT
SLA

Violation

 Service usage monitoring

The objective of the service monitoring is to bill the service users. For this, the component should
communicate with the user registry and the contract registry in order to know which are the services
contracted by each user.

Table 25. Integration requirements of the Service usage monitoring module

Inputs

Internal/External Origin Data

Internal
Service

Contracting
Contracted

Services

Outputs

Internal/External Destination Data

External Console Billing data

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 41 of 73

www.decide-h2020.eu

7.5 DECIDE ADAPT (KR5)

7.5.1 Description

DECIDE ADAPT is a tool that allows the (semi-)automatic adaptation of the application and re-
deployment in another multi-cloud configuration when certain conditions are not met. These
conditions are on one hand the violations of the application’s own multi-cloud SLA (MCSLA) and on
the other hand, the non-fulfilment of the Non Functional Properties (NFP) of the Cloud Service
Providers (CSPs) where the application is deployed as well as the non-fulfilment of the NFP of the
services provided by the ACSmI that the application is using. These conditions will trigger an alert and
cause the OPTIMUS tool to be launched again in order to search for another deployment
configuration. Depending on the technological complexity requirement and the requirements initially
prioritized by the user, the application will be re-adapted automatically or an alert to the operator
will be launched along with a diagnosis of what malfunctioned so that a new optimal configuration
can be found.

The main functionalities of ADAPT are:

 Deployment. ADAPT will support automatic deployment of the user application. The input
application is composed by one or more Containers hosting micro services and described by the
Application Description Document.

 (Deployment) Configuration management. ADAPT will keep track of the endpoints of each micro
service composing the application and will update this information upon application
reconfiguration and re-deployment.

 Application MCSLA monitoring. ADAPT will monitor the application according to its defined
(Multi-Cloud) SLA and will identify any related violations.

 NFR monitoring. ADAP will monitor the violations to the Non Functional Requirements (NFR)
established for the application during the design phase; the actual SLA monitoring will be done
by ACSmI and ADAPT will receive the violations.

 Handle violations. ADAPT will handle any violation raised either by monitoring the application
MCSLA or the CSPs’ NFRs. Violation handling may lead both to alerting the operator and to
contacting OPTIMUS to obtain a new configuration to re-deploy the application.

 Application adaptation. ADAPT will support adaptation of applications in response to violations

 Application re-deployment. Application re-deployment will be the main method for enacting
adaptation in response to violations.

Table 26. KR5 Functionalities

The figure below shows the workflow that will support the listed functionalities:

Phase Sub-phase Functionality

Operation phase Application Deployment Deployment

Operation phase Application Deployment (Deployment) Configuration management

Operation phase Application Monitoring Application MCSLA monitoring

Operation phase Application Monitoring NFR monitoring

Operation phase Application Adaptation Handle violations

Operation phase Application Adaptation Application adaptation

Operation phase Application Adaptation Application re-deployment

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 42 of 73

www.decide-h2020.eu

Figure 6. KR5’s workflow diagram

7.5.2 Integration requirements

7.5.2.1 Operation

7.5.2.1.1 Deployment

 Deployment

The goal of this functionality is to orchestrate the deployment of the application described by the
input Application Description. The information needed for deployment can be found in the
Deployment Description section of the Application Description (see Figure 7 below).

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 43 of 73

www.decide-h2020.eu

Figure 7. Application Description Data Model

The input for application deployment is included in the Deployment Description section of the
Application Description (Figure 7). ADAPT must know which containers are part of the application to
be deployed, from where their image can be downloaded, to which CSP and which service within
that CSP the container should be deployed, and which script can be used for executing the
deployment itself. The micro services hosted in each container and their statelessness should be
known as well. Optional application tests can be provided in a specific container to assess the
application readiness for being switched online to service client requests.

No specific output is planned from the Deployment Orchestrator module other than the exit status of
the requested deployment operation.

Table 27. Integration requirements of the Deployment Orchestrator module

Inputs

Internal/Externa
l

Origin Data

External
Application
Controller

Application
Description

External
Application
Controller

Application
Containers

External
Application
Controller

Deploymen
t scripts

Outputs

Internal/External Destination Data

External
Deployment

method
caller

Exit
status

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 44 of 73

www.decide-h2020.eu

External

DECIDE
Framework

Development
/ Integration

module

Optional
Application

tests

7.5.2.1.2 Deployment

 (Deployment) Configuration management

The goal of this functionality is to track the endpoints of each micro service composing the application

and to update this information upon application reconfiguration and re-deployment. This allows the
dynamic reconfiguration of the service proxy through which each application micro service can be
reached independently by its (possibly changing) location.

The application developer should define the REST endpoint of each micro service composing the
application.

The proxy prefix to build the corresponding REST endpoint of each micro service will be provided as
application configuration information.

Table 28. Integration requirements of the Service Registry module

Inputs

Internal/External Origin Data

External

DECIDE
Framework

Development
/ Integration

module

Micro
service

endpoints

Outputs

Internal/External Destination Data

Internal Application
Proxy
prefix

7.5.2.1.3 Monitoring

 Application MCSLA monitoring

The goal of this functionality is to monitor the application according to its defined (Multi-Cloud) SLA
and to identify any related violations.

The Monitoring Engine will need the application’s (MC)SLA as an input and will need to know, for
each Service Level Objective (SLO), which is the monitoring source from which to retrieve metrics
data. In some cases the metrics can be collected by the ADAPT components themselves, in other
cases an application probe will need to be provided as part of the application and the monitoring
source will indicate its endpoint.

The ADAPT Monitoring Engine will provide a REST API to get the monitored metrics and will provide
alert notifications for each SLA violation to all registered clients.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 45 of 73

www.decide-h2020.eu

Table 29. Integration requirements of the Monitoring Engine module

Inputs

Internal/External Origin Data

External
DECIDE

Framework
(MC)SLA

External
DECIDE

Framework
Monitoring

sources

Outputs

Internal/External Destination Data

Internal /
External

Registered
clients

SLA
violations

7.5.2.1.4 Monitoring

 NFR monitoring

The goal of this functionality is to monitor the violations of the Non Functional Requirements (NFR)
established for the application during the design phase; the actual SLA monitoring will be done by
ACSmI and ADAPT will receive the violations.

The ADAPT Monitoring Engine will provide alert notifications for each SLA violation to all registered
clients and will provide a file to OPTIMUS with the violations/metrics registry to “optimize” the next
simulation.

Table 30. Integration requirements of the Monitoring Engine module

Inputs

Internal/External Origin Data

External ACSmI
SLA

Violations

Outputs

Internal/External Destination Data

Internal /
External

Registered
clients

SLA
violations

External OPTIMUS
Report on
NFR / SLA
violations

7.5.2.1.5 Adaptation

 Handle violations

The goal of this functionality is to handle any violation raised by monitoring either the application
MCSLA, or the CSPs’ NFRs. Violation handling may lead both to alerting the operator and to
contacting OPTIMUS to obtain a new configuration to re-deploy the application.

NFR / (MC)SLA violations are collected by the Monitoring Engine itself. To handle a violation
according to requirements, the Monitoring Engine needs to know the level of technological risk of
the application.

Violations for a low technological risk application will result in triggering the simulation of a new
deployment configuration in OPTIMUS. The ADAPT Monitoring Engine will also alert the operator
through some UI.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 46 of 73

www.decide-h2020.eu

Table 31. Integration requirements of the Monitoring Engine module

Inputs

Internal/External Origin Data

Internal
Monitoring

Engine
NFR/(MC)SLA

violations

External OPTIMUS
Level of

technological
risk

Outputs

Internal/External Destination Data

External
Operator

GUI
SLA violation

alert

External OPTIMUS
Trigger new
deployment

configuration

7.5.2.1.6 Adaptation

 Application adaptation / Application re-deployment

The goal of this functionality is to adapt applications in response to violations. Application re-
deployment will be the main strategy for enacting adaptation in response to violations. Re-
deployment will be equivalent to the initial deployment, and Optional application tests can be
provided in a specific container to assess the application readiness for being switched online to
service client requests.

The input for application re-deployment is the same as that needed for initial application
deployment: the information included in the Deployment Description section of the Application
Description.

As for the initial deployment, output from the Deployment Orchestrator will be the exit status of the
requested deployment operation.

Table 32. Integration requirements of the Deployment Orchestrator module

Inputs

Internal/External Origin Data

External
Application
Controller

Application
Description

External
Application
Controller

Application
Containers

External
Application
Controller

Deployment
scripts

External

DECIDE
Framework

Development
/ Integration

module

Optional
Application

tests

Outputs

Internal/External Destination Data

External
Deployment

method
caller

Exit
status

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 47 of 73

www.decide-h2020.eu

8 Conclusions

DECIDE is composed by different modules that need to interact among themselves. In order to
achieve the proper integration of each component, their data needs to be analysed. This document
has explored the data exchanges of each KR, both internal data exchanges and with other KRs.

The document has also focused on the needs of the DECIDE framework (KR1), to obtain the
requirements it must fulfil to support the DECIDE workflow, the DevOps principles, and to be
validated by the use cases.

Lastly, the appendix contains an analysis of DevOps, to understand its basic principles, and a
comparison of tools to be integrated in the KR1.

The information included in this deliverable will serve as input for the DECIDE architecture, of which
a first version will be found in deliverable D2.4 and a final version in deliverable D2.5.

It is important to remark that this document is the first part of a series of two. The second part, D2.2,
will be released by month 23 and will update the present deliverable with details that will be
available as the project progresses.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 48 of 73

www.decide-h2020.eu

9 References

[1] I. Ul Haq and E. Schikuta, "Aggregation patterns of service level agreements," in Proceedings of
the 8th International Conference on Frontiers of Information Technology , Islamabad, Pakistan,
December 2010.

[2] ISO 19086-1:2016. Information technology. Cloud computing. Service level agreement (SLA)
framework. Part 1: Overview and concepts, 2016.

[3] DECIDE Consortium, DECIDE D5.1 - ACSmI requirements and technical design, 2017.

[4] D. Chapman, Introduction to DevOps on AWS, 2014.

[5] New Relic, Navigating DevOps. What it is and why it matters to you and your business, New Relic
Inc., 2017.

[6] Puppet, DORA, "2016 State of DevOps Report," 2016.

[7] G. Rushgrove, Get started with DevOps: A guide for IT managers, Puppet, 2016.

[8] R. Seroter, Exploring the entire DevOps Toolchain for (Cloud) Teams, InfoQ, 2014.

[9] DECIDE Consortium, DECIDE, H2020 Proposal #731533, 2016.

[10] Opensource, «What are microservices?,» [En línea]. Available:
https://opensource.com/resources/what-are-microservices. [Último acceso: 2017].

[11] M. Rouse, "Techtarget. Microservices," January 2017. [Online]. Available:
http://searchmicroservices.techtarget.com/definition/microservices. [Accessed April 2017].

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 49 of 73

www.decide-h2020.eu

Appendices

Appendix A. DevOps

DevOps is a portmanteau of “software development” and “IT operations”. It is used to refer to
practices that motivate the collaboration, communication and integration between software
developers and IT professionals while automating the process of software delivery and infrastructure
changes. DevOps does not have a “formal” definition. It can be described as a philosophy, cultural
change and paradigm shift, and has the goal of establishing an environment where building, testing
and releasing software can happen rapidly, frequently and more reliably.

DevOps finds its origins in Enterprise Management Systems (EMS) and Agile development. The
relationship with EMS comes from the fact that many of the people involved in the initial definition
of DevOps were system administrators, who brought the main EMS best practices to DevOps, such as
configuration management, system monitoring, automated provisioning and the toolchain approach.

The concept of DevOps is also closely related to Agile software development. Agile came as an
alternative to the waterfall development methodology (where the whole set of requirements was
defined before starting development work), and it emphasizes the need for collaboration between
business users and developers. With Agile, the focus on software development shifted towards
smaller and quicker releases, in order to respond faster to changes. This philosophy started to extend
down the chain towards infrastructure and adopted the name DevOps. Where Agile was about
collaboration between business users and developers, DevOps focuses on the collaboration between
developers, operators and security teams. [4] [5]

A.1. Benefits of DevOps

Many reputable sources report important benefits achieved with DevOps. These reports should be
interpreted with caution, since the benefits brought by adopting a DevOps approach vary according
to the type of organization that implements them.

In any case, it seems that there are tangible benefits in applying DevOps. Some of these benefits,
however, are not easy to measure. Saving employees time means giving them more space to think,
experiment, be creative and innovate. The value of this increased freedom to innovate is hard to
quantify, but it can be more significant than any cost savings.

Having said that, DevOps can also provide measurable benefits. According to a Puppet report, the
potential savings from eliminating excess rework range from around $4M for small, high-performing
organization, up to almost $4B for large medium-performing, organizations.

DevOps can also help to reduce downtime. Potential savings from this reason can reach $4.5M for
medium performers.

The same report also mentions that high-performing DevOps organizations see deployments 200
more frequent, 24 times faster recovery times and three times lower change failure rates.

DevOps can also help to keep applications secure, with high performers spending up to 50% less time
remediating security issues than low performers. [5] [6]

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 50 of 73

www.decide-h2020.eu

A.2. DevOps Principles

As mentioned before, DevOps is not a process or a standard. It can be defined as a culture, which
consists in a series of principles or recommendations. These principles can be grouped under four
main pillars: [7]

Culture: above all, DevOps means a cultural shift. It is not just a set of tools and practices, it is about
establishing priorities and expectations, and how those priorities and expectations are pursued.

Automation: this is a key concept for DevOps. Everything that can be automated must be
automated. Not having to worry about common and repetitive way frees time to dedicate to higher
level work.

Measurement: feedback is an important part of agile and lean practices. Feedback is obtained by
measuring, and with a DevOps-oriented mind, everything that moves in production should be
measured. These measurements should be then shared with the widest possible audience.

Sharing: nowadays, organizations are complex and software teams are formed by people with
different skills and specialized knowledge. These people must work together in order to be efficient,
which is more easily achieved by sharing. As mentioned above, defining metrics and exposing them
to everyone can be greatly beneficial for the organization.

These four pillars can be delved into, which results in the principles that should govern a DevOps
approach:

1. Small but frequent updates

Small but frequent updates allow organizations to innovate faster for their clients. Generally, these
updates are more incremental than the occasional updates done under traditional practices.

Smaller updates also reduce the risk on each implementation. They help teams to solve errors
quicker, since these smaller updates allow them to identify the last implementation that provoked
the error.

Even though the frequency and size of the updates vary, organizations that follow a DevOps model
implement updates much more frequently than those that follow a traditional model.

2. Use microservices architecture

A microservices architecture divides big and complex systems into smaller and independent projects.
Applications are divided in several individual components (services) and each service fulfils just one
purpose or task and it is operated independently of the other services and the general application.

This architecture reduces the costs associated to update applications. When a service is assigned to
small and agile team, organizations can move forward quickly.

3. Continuous integration

Continuous integration is software development practice that consists in periodically combining the
changes in code in a central repository, after which versions and automatic tests are executed.

The main goals of the continuous integration are to improve software quality, to find and fix errors
faster and to reduce the time it takes to validate and publish new software updates.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 51 of 73

www.decide-h2020.eu

4. Continuous delivery

With continuous delivery, changes in code are created, tested and prepared automatically, to be
delivered to the production phase. It widens the concept of continuous integration since it
implements all changes in code on a test and/or production environment after the creation phase.

When continuous delivery is implemented correctly, developers will always have an artefact
available for implementation, which has been subject to a standardized testing process.

5. Continuous deployment

The main goal of continuous deployment is to allow for the automatic deployment of production-
ready code. This deployment will take place in a quick, frequent and reliable way.

Continuous deployment is closely related to continuous delivery. The main difference is that
continuous deployment references production deployments.

6. Infrastructure automation (Infrastructure as code)

Infrastructure as code is a practice by which infrastructure is provisioned and managed using code
and software development techniques, such as version control and continuous integration.

This paradigm allows developers and administrators to manage infrastructure programmatically, as
opposed to manually configure and adjust resources.

Thus, engineers can interact with infrastructure with code-based tools and treat said infrastructure
similarly to how they treat application code. As they are defined by code, both infrastructure and
servers can be implemented quickly with standardized patterns, updated with the latest revisions
and versions or duplicated in a repeatable way.

7. Monitoring, use of registries, issue tracking

Organizations monitor metrics and logs to study how applications and infrastructure performance
affects the experience that the final user has with their product.

By gathering, categorizing and analysing the data generated by applications and infrastructure,
organizations can understand how changes and updates affect users, which provides information
about the root cause of unexpected problems.

Active monitoring is becoming increasingly important, since services must be available 24/7 as
update frequency increases.

Alert creation and real-time data analysis also helps organizations to monitor their services in a
proactive way.

8. Communication and cooperation

The increase in communication and cooperation within an organization is one of the key cultural
aspects in DevOps. The use of DevOps tools and the automation of the software delivery process
promotes cooperation, since it physically gathers the workflows and responsibilities of the DevOps
teams.

Furthermore, these teams stablish solid cultural rules that revolve around sharing information and
facilitating communication, by means of chat applications, project and issue tracking systems and
wikis.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 52 of 73

www.decide-h2020.eu

This approach fosters the communication between development and operation teams, and even
among other teams, such as marketing and sales. This allows all departments of the organization to
better align with projects and goals.

9. Planning

Teams that plan common goals have a better comprehension of the dependencies, can see
bottlenecks before they appear and can overcome priority conflicts. Regardless of whether a tool
oriented to “blackboard” technologies, such as Kanban, is used or not, what matters the most is to
leverage the living assets, not static plans.

Special attention should be paid to divide objects into manageable tasks that can be solved quickly.
Static plans that are updated weekly and distributed by mail are not the best option. A better
alternative would be to use shared planning tools, which allow to easily see each team member’s
progress in real time, and to hold conversations between different teams in a collaborative way.

10. Security

In a DevOps environment, attention to security is crucial. Infrastructure and company assets must be
protected, and, when problems arise, they must be addressed quickly and effectively.

[4] [8]

A.3. Extended DevOps Principles

DECIDE action presents an approach that tries to extend the current known DevOps principles with
the objective of covering the complete SDLC. The objective is to cover phases or stages that are
specially needed in the context of multi-cloud software development life cycle. With this in mind,
DECIDE extends the DevOps principles with these new ones:

1. Continuous architecting

The current DevOps principles cover the continuous delivery and continuous integration of the
application, also the continuous update. Usually, these principles are focused on the implementation
rather than on the initial design or architecting of the software. When dealing with complex multi-
cloud applications, the design principles and architectural patterns to apply or use when designing
the application are quite important. DECIDE action includes (and supports) this principle to support
the first phases of the SDLC with the application of best practices and design principles for multi-
cloud applications. [9]

2. Continuous pre-deployment

Before deploying multi-cloud applications (understood as applications whose components are split
and deployed into different clouds) a deployment configuration selection activity has to be
considered.

In a multi-cloud scenario the selection of the resources/services where to deploy the different
components is a complex process and as such has to be considered in the SDLC and SOLC. That is the
reason why DECIDE action includes the continuous pre-deployment as one of the principles of the
extended DevOps approach we want to support. To be able to implement this new activity prior to
actual deployment, DECIDE provides mechanisms to analyze alternative cloud deployment scenarios
and their impact in the NFR of the application (e.g. security, performance), in the multi-cloud
application SLA (MCSLA) as well as in the application costs, suggesting the developers and operators
the best cloud deployment alternatives through the simulation of the behaviour of the application
under stressful conditions and the cloud resources and cloud nodes. [9]

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 53 of 73

www.decide-h2020.eu

3. Continuous proactive adaptation

The classical DevOps principles include the continuous integration and continuous deployment.
These principles have to do with the integration of changes/updates in the software and deploying
these new versions of the software. It can be considered a type of adaptation triggered by the
developer who wants to integrate updates and deploy them continuously.

DECIDE proposes to go one step further and to include a new phase/process in the SOLC: the
continuous proactive adaptation. The continuous proactive adaptation comprises two main activities:
on the one hand the monitoring of the multi-cloud application SLA (and indirectly the SLAs of the
underlying cloud resources) and on the other hand the semi-automatic adaptation and redeployment
into new cloud services when needed based on the assessment of this continuous monitoring. [9]

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 54 of 73

www.decide-h2020.eu

Appendix B. Tools analysis

B.1. Phase: Implementation

B.1.1. Tool Name: Eclipse

B.1.1.1 Description

Eclipse is an integrated development environment (IDE) used in computer programming, and is the
most widely used Java IDE. It contains a base workspace and an extensible plug-in system for
customizing the environment. Eclipse is written mostly in Java and its primary use is for developing
Java applications, but it may also be used to develop applications in other programming languages
via plug-ins, including: Ada, ABAP, C, C++, COBOL, D, Fortran, Haskell, JavaScript, Julia, Lasso, Lua,
NATURAL, Perl, PHP, Prolog, Python, R, Ruby (including Ruby on Rails framework), Rust, Scala,
Clojure, Groovy, Scheme, and Erlang. It can also be used to develop documents with LaTeX (via a
TeXlipse plug-in) and packages for the software Mathematica. Development environments include
the Eclipse Java development tools (JDT) for Java and Scala, Eclipse CDT for C/C++, and Eclipse PDT
for PHP, among others. Eclipse supports a rich selection of extensions, adding support for Python via
pydev, Android development via Google's ADT, JavaFX via e(fx)clipse, JavaScript, jQuery, and many
others at the Eclipse Marketplace. Valable is a Vala plug-in for Eclipse.

B.1.1.2 Open Source

Yes.

B.1.1.3 Operating System

Linux, MacOS, Solaris, Windows.

B.1.1.4 Free

Yes.

B.1.1.5 Licence

EPL.

B.1.1.6 Reference

https://www.eclipse.org/

B.1.1.7 Usability (ease of use)

Eclipse provides the Rich Client Platform (RCP) for developing general purpose applications.

B.1.1.8 Extendibility

The Eclipse Web Tools Platform (WTP) project is an extension of the Eclipse platform with tools for
developing Web and Java EE applications.

Eclipse supports a rich selection of extensions, adding support for Python via pydev, Android
development via Google's ADT, JavaFX via e(fx)clipse, JavaScript, jQuery, and many others at the
Eclipse Marketplace. Valable is a Vala plug-in for Eclipse.

B.1.1.9 Functionality supported

https://www.eclipse.org/
https://en.wikipedia.org/wiki/Rich_Client_Platform
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/Pydev
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/JavaFX
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JQuery
https://en.wikipedia.org/wiki/Vala_%28programming_language%29

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 55 of 73

www.decide-h2020.eu

IDE.

B.1.1.10 Languages supported

Ada , C/C++, D , Fortran, Groovy, Haskell, Java , JavaScript , Lua , Perl, PHP, Ruby, Scala , Tcl.

B.1.1.11 Language implemented

Java, ANSI C, C++,JSP, Bourne shell ,perl, php, sed.

B.1.1.12 Community behind it (in case of OS)

Eclipse Foundation, independent from IBM.

https://eclipse.org/org/foundation/

B.1.2. Tool Name: Netbeans

B.1.2.1 Description

NetBeans is a software development platform written in Java. The NetBeans Platform allows
applications to be developed from a set of modular software components called modules.
Applications based on the NetBeans Platform, including the NetBeans integrated development
environment (IDE), can be extended by third party developers. The NetBeans IDE is primarily
intended for development in Java, but also supports other languages, in particular PHP, C/C++ and
HTML5.NetBeans is cross-platform and runs on Microsoft Windows, Mac OS X, Linux, Solaris and
other platforms supporting a compatible JVM. The NetBeans Team actively support the product and
seek feature suggestions from the wider community. Every release is preceded by a time for
Community testing and feedback.

B.1.2.2 Open Source

Yes.

B.1.2.3 Operating System

Windows, Mac OS X, Linux, Solaris.

B.1.2.4 Free

Yes.

B.1.2.5 Licence

CCDL/GPL.

B.1.2.6 Reference

https://netbeans.org/

B.1.2.7 Functionality supported

The NetBeans Platform is a framework for simplifying the development of Java Swing desktop
applications. The NetBeans IDE bundle for Java SE contains what is needed to start developing
NetBeans plugins and NetBeans Platform based applications; no additional SDK is required.

https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Java_Swing

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 56 of 73

www.decide-h2020.eu

B.1.2.8 Languages supported

D, Fortran, Groovy, Java, Javascript, Perl, Php, Python, Ruby, Scala.

B.1.2.9 Language implemented

Java.

B.1.2.10 Community behind it (in case of OS)

Oracle (Sun Microsystems).

B.2. Phase: Integration

B.2.1. Tool Name: Ant

B.2.1.1 Description

Apache Ant is a Java library and command-line tool whose mission is to drive processes described in
build files as targets and extension points dependent upon each other. The main known usage of Ant
is the build of Java applications. Ant supplies a number of built-in tasks allowing to compile,
assemble, test and run Java applications. Ant can also be used effectively to build non-Java
applications, for instance C or C++ applications. More generally, Ant can be used to pilot any type of
process which can be described.

B.2.1.2 Open Source

Yes.

B.2.1.3 Operating System

Cross platform.

B.2.1.4 Free

Yes.

B.2.1.5 Licence

Apache 2.0.

B.2.1.6 Reference

http://ant.apache.org/

B.2.1.7 Functionality supported

Automatic Software Built processes.

B.2.1.8 Languages supported

Java.

B.2.1.9 Language implemented

Java, XML.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 57 of 73

www.decide-h2020.eu

B.2.1.10 Community behind it (in case of OS)

Apache Software Foundation.

B.2.2. Tool Name: Maven

B.2.2.1 Description

Apache Maven is a build automation tool used primarily for Java projects. Maven addresses two
aspects of building software: first, it describes how software is built, and second, it describes its
dependencies. Contrary to preceding tools like Apache Ant, it uses conventions for the build
procedure, and only exceptions need to be written down. An XML file describes the software project
being built, its dependencies on other external modules and components, the build order,
directories, and required plug-ins. It comes with pre-defined targets for performing certain well-
defined tasks such as compilation of code and its packaging. Maven dynamically downloads Java
libraries and Maven plug-ins from one or more repositories such as the Maven 2 Central Repository,
and stores them in a local cache. This local cache of downloaded artefacts can also be updated with
artefacts created by local projects. Public repositories can also be updated. Maven can also be used
to build and manage projects written in C#, Ruby, Scala, and other languages. The Maven project is
hosted by the Apache Software Foundation.

B.2.2.2 Open Source

Yes.

B.2.2.3 Operating System

Cross platform.

B.2.2.4 Free

Yes.

B.2.2.5 Licence

Apache 2.0.

B.2.2.6 Reference

http://maven.apache.org/

B.2.2.7 Functionality supported

Automatic Software Built processes and Project Management.

B.2.2.8 Languages supported

Java.

B.2.2.9 Language implemented

Java.

B.2.2.10 Community behind it (in case of OS)

Apache Software Foundation.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 58 of 73

www.decide-h2020.eu

B.2.3. Tool Name: GitLab

B.2.3.1 Description

GitLab is a web-based Git repository manager with wiki and issue tracking features, using an open
source license, developed by GitLab Inc. The software was written by Dmitriy Zaporozhets and Valery
Sizov from Ukraine. The code is written in Ruby. Later, some parts have been rewritten in Go. As of
December 2016, the company has 150 team members and more than 1400 open source
contributors. It is used by organisations such as IBM, Sony, Jülich Research Center, NASA, Alibaba,
Invincea, O’Reilly Media, Leibniz-Rechenzentrum (LRZ) and CERN.

B.2.3.2 Open Source

Yes.

B.2.3.3 Operating System

Cross platform.

B.2.3.4 Free

Commercial.

B.2.3.5 Licence

Open Core, Commercial.

B.2.3.6 Reference

http://about.gitlab.com

B.2.3.7 Functionality supported

Web-based Git repository manager.

B.2.3.8 Language implemented

Ruby, Go.

B.2.3.9 Community behind it (in case of OS)

GitLab Inc.

B.2.4. Tool Name: Subversion

B.2.4.1 Description

Apache Subversion (often abbreviated SVN, after its command name svn) is a software versioning
and revision control system distributed as open source under the Apache License. Software
developers use Subversion to maintain current and historical versions of files such as source code,
web pages, and documentation. Its goal is to be a mostly compatible successor to the widely used
Concurrent Versions System (CVS). The open source community has used Subversion widely: for
example in projects such as Apache Software Foundation, Free Pascal, FreeBSD, GCC, Mono and
SourceForge. CodePlex offers access to Subversion as well as to other types of clients. Subversion
was created by CollabNet Inc. in 2000, and is now a top-level Apache project being built and used by
a global community of contributors.

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 59 of 73

www.decide-h2020.eu

B.2.4.2 Open Source

Yes.

B.2.4.3 Operating System

Cross platform.

B.2.4.4 Free

Yes.

B.2.4.5 Licence

Apache 2.0.

B.2.4.6 Reference

http://subversion.apache.org/

B.2.4.7 Functionality supported

Software versioning and revision control system.

B.2.4.8 Languages supported

Python, Perl, Java, Ruby.

B.2.4.9 Language implemented

C.

B.2.4.10 Community behind it (in case of OS)

Apache Software Foundation.

B.2.5. Tool Name: Git

B.2.5.1 Description

Git is a version control system (VCS) for tracking changes in computer files and coordinating work on
those files among multiple people. It is primarily used for software development, but it can be used
to keep track of changes in any files. As a distributed revision control system it is aimed at speed,
data integrity, and support for distributed, non-linear workflows. Git was created by Linus Torvalds in
2005 for development of the Linux kernel, with other kernel developers contributing to its initial
development. Its current maintainer since 2005 is Junio Hamano. As with most other distributed
version control systems, and unlike most client–server systems, every Git directory on every
computer is a full-fledged repository with complete history and full version tracking abilities,
independent of network access or a central server. Like the Linux kernel, Git is free software
distributed under the terms of the GNU General Public License version 2.

B.2.5.2 Open Source

Yes.

B.2.5.3 Operating System

https://en.wikipedia.org/wiki/Software_versioning
https://en.wikipedia.org/wiki/Revision_control

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 60 of 73

www.decide-h2020.eu

POSIX: Linux, Windows, macOS, Solaris, BSD.

B.2.5.4 Free

Yes.

B.2.5.5 Licence

GNU GPL v2.

B.2.5.6 Reference

https://git-scm.com/

B.2.5.7 Functionality supported

Software versioning and revision control system.

B.1.2.1. Languages supported

Java (JGit), JScript (JS-Git), Ruby, Python, and Haskell.

B.1.2.2. Language implemented

C, Shell, Perl, Tcl , Python.

B.1.2.3. Community behind it (in case of OS)

Hosted on GitHub, responsible developer Junio Hamano.

B.2.6. Tool Name: Jenkins

B.2.6.1 Description

Jenkins is an open source automation server written in Java. Jenkins helps to automate the non-
human part of the whole software development process, with now common things like continuous
integration, but by further empowering teams to implement the technical part of a Continuous
Delivery. It is a server-based system running in a servlet container such as Apache Tomcat. It
supports SCM tools including AccuRev, CVS, Subversion, Git, Mercurial, Perforce, Clearcase and RTC,
and can execute Apache Ant, Apache Maven and sbt based projects as well as arbitrary shell scripts
and Windows batch commands. The creator of Jenkins is Kohsuke Kawaguchi. Released under the
MIT License, Jenkins is free software. Builds can be triggered by various means, for example by
commit in a version control system, by scheduling via a cron-like mechanism and by requesting a
specific build URL. It can also be triggered after the other builds in the queue have completed.
Jenkins functionality can be extended with plugins.

B.2.6.2 Open Source

Yes.

B.2.6.3 Operating System

Cross platform.

B.2.6.4 Free

Yes.

https://en.wikipedia.org/wiki/Software_versioning
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Shell_%28computing%29
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Python_%28programming_language%29

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 61 of 73

www.decide-h2020.eu

B.2.6.5 Licence

MIT.

B.2.6.6 Reference

https://jenkins.io/

B.2.6.7 Extendibility

Plug-ins.

B.2.6.8 Functionality supported

Continuous integration Tool.

B.2.6.9 Languages supported

Android, C/C++, Java, Python, Ruby.

B.2.6.10 Language implemented

Java.

B.2.6.11 Community behind it (in case of OS)

Jenkins Community.

B.2.7. Tool Name: Docker

B.2.7.1 Description

Docker is an open-source project that automates the deployment of applications inside software
containers. Docker containers wrap up a piece of software in a complete filesystem that contains
everything it needs to run: code, runtime, system tools, system libraries – anything you can install on
a server. This guarantees that it will always run the same, regardless of the environment it is running
in. Docker provides an additional layer of abstraction and automation of operating-system-level
virtualization on Windows and Linux. Docker uses the resource isolation features of the Linux kernel
such as cgroups and kernel namespaces, and a union-capable file system such as OverlayFS and
others to allow independent "containers" to run within a single Linux instance, avoiding the overhead
of starting and maintaining virtual machines.

The Linux kernel's support for namespaces mostly isolates an application's view of the operating
environment, including process trees, network, user IDs and mounted file systems, while the kernel's
cgroups provide resource limiting, including the CPU, memory, block I/O, and network. Since version
0.9, Docker includes the libcontainer library as its own way to directly use virtualization facilities
provided by the Linux kernel, in addition to using abstracted virtualization interfaces via libvirt, LXC
(Linux Containers) and systemd-nspawn.

B.2.7.2 Open Source

Yes.

B.2.7.3 Operating System

Linux, Windows.

https://jenkins.io/

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 62 of 73

www.decide-h2020.eu

B.2.7.4 Free

Yes.

B.2.7.5 Licence

Apache 2.0.

B.2.7.6 Reference

www.docker.com

B.2.7.7 Functionality supported

Automates the deployment of applications inside software containers.

B.2.7.8 Language implemented

Java.

B.2.7.9 Community behind it (in case of OS)

Apache Software Foundation.

B.2.8. Tool Name: Portainer

B.2.8.1 Description

Portainer is a simple management solution for Docker. Portainer is an open-source lightweight
management UI which allows you to easily manage your Docker host or Swarm cluster

It consists of a web UI that allows you to easily manage your Docker containers, images, networks
and volumes. Portainer provides a detailed overview of Docker and allows you to manage containers,
images, networks and volumes. It is easy to deploy, one Docker command away from running
Portainer anywhere. It is compatible with the standalone Docker engine and with Docker Swarm.

Portainer adds a security layer on top of Docker with authentication, multiple user management and
the ability to define restrict access to some resources.

B.2.8.2 Open Source

Yes.

B.2.8.3 Operating System

Linux, Windows,iOs.

B.2.8.4 Free

Yes.

B.2.8.5 Licence

Apache 2.0.

B.2.8.6 Reference

http://www.docker.com/
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Software_container
http://portainer.io/

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 63 of 73

www.decide-h2020.eu

http:www.portainer.io

B.2.8.7 Functionality supported

It manages Docker containers, images, networks and volumes via Dashboard.

It allows to deploy containers from a template list that includes: MySQL, MariaDB, PostgreSQL,
Drupal, Jenkins, Odoo, Redmine, Magento.

B.2.8.8 Language implemented

Go.

B.2.8.9 Community behind it (in case of OS)

Community (Gitter, Slack) and Commercial Support.

B.2.9. Tool Name: Nagios Core

B.2.9.1 Description

Nagios is a free and open source computer-software application that monitors systems, networks
and infrastructure. Nagios offers monitoring and alerting services for servers, switches, applications
and services. It alerts users when things go wrong and alerts them a second time when the problem
has been resolved. Ethan Galstad and a group of developers originally wrote Nagios as NetSaint. As
of 2015 they actively maintain both the official and unofficial plugins.The Linux kernel's support for
namespaces mostly isolates an application's view of the operating environment, including process
trees, network, user IDs and mounted file systems, while the kernel's cgroups provide resource
limiting, including the CPU, memory, block I/O, and network. Since version 0.9, Docker includes the
libcontainer library as its own way to directly use virtualization facilities provided by the Linux kernel,
in addition to using abstracted virtualization interfaces via libvirt, LXC (Linux Containers) and
systemd-nspawn.

B.2.9.2 Open Source

Yes.

B.2.9.3 Operating System

Cross Platform.

B.2.9.4 Free

Yes.

B.2.9.5 Licence

GNU GPL V2.

B.2.9.6 Reference

www.nagios.org

B.2.9.7 Extendibility

Plugin.

http://www.nagios.org/

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 64 of 73

www.decide-h2020.eu

B.2.9.8 Functionality supported

Network Monitoring.

B.2.9.9 Language implemented

C.

B.2.9.10 Community behind it (in case of OS)

Nagios Plugin Team.

B.2.10. Tool Name: Pfsense

B.2.10.1 Description

PfSense is an open source firewall/router computer software distribution based on FreeBSD. It is
installed on a physical computer or a virtual machine to make a dedicated firewall/router for a
network and has been noted for its reliability and offering a range of features. It can be configured
and upgraded through a web-based interface, and requires no knowledge of the underlying FreeBSD
system to manage. pfSense is commonly deployed as a perimeter firewall, router, wireless access
point, DHCP server, DNS server, and as a VPN endpoint. pfSense supports installation of third-party
packages like Snort or Squid through its Package Manager. As of 2016 pfSense is described by
servethehome.com as the "gold standard" for open source network appliances in its buyer guides.

B.2.10.2 Open Source

Yes.

B.2.10.3 Operating System

Cross Platform, can be installed on hardware with x86 or x86-64 architecture.

B.2.10.4 Free

Yes.

B.2.10.5 Licence

Apache 2.0.

B.2.10.6 Reference

https://www.pfsense.org/

B.2.10.7 Functionality supported

Berkeley Software Distribution.

B.2.10.8 Language implemented

C.

B.2.10.9 Community behind it (in case of OS)

Electric Sheep Fencing LLC (ESF).

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 65 of 73

www.decide-h2020.eu

B.2.11. Tool Name: Zabbix

B.2.11.1 Description

Zabbix is enterprise open source monitoring software for networks and applications, created by
Alexei Vladishev. It is designed to monitor and track the status of various network services, servers,
and other network hardware. Zabbix uses MySQL, PostgreSQL, SQLite, Oracle or IBM DB2 to store
data. Its backend is written in C and the web frontend is written in PHP. Zabbix offers several
monitoring options: Simple checks can verify the availability and responsiveness of standard services
such as SMTP or HTTP without installing any software on the monitored host. A Zabbix agent can also
be installed on UNIX and Windows hosts to monitor statistics such as CPU load, network utilization,
disk space, etc. As an alternative to installing an agent on hosts, Zabbix includes support for
monitoring via SNMP, TCP and ICMP checks, as well as over IPMI, JMX, SSH, Telnet and using custom
parameters. Zabbix supports a variety of near-real-time notification mechanisms, including XMPP. As
an alternative to installing an agent on hosts, Zabbix includes support for monitoring via SNMP, TCP
and ICMP checks, as well as over IPMI, JMX, SSH, Telnet and using custom parameters. Zabbix
supports a variety of near-real-time notification mechanisms, including XMPP.

B.2.11.2 Open Source

Yes.

B.2.11.3 Operating System

Cross Platform.

B.2.11.4 Free

Yes.

B.2.11.5 Licence

GNU GPL V2.

B.2.11.6 Reference

https://www.zabbix.org/

B.2.11.7 Functionality supported

Network Monitoring.

B.2.11.8 Language implemented

C.

B.2.11.9 Community behind it (in case of OS)

Zabbix and Zabbix Comunity.

B.2.12. Tool Name: Sonarqube

B.2.12.1 Description

https://www.zabbix.org/

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 66 of 73

www.decide-h2020.eu

SonarQube (formerly Sonar) is an open source platform for continuous inspection of code quality.
Supports languages: Java (including Android), C/C++, Objective-C, C#, PHP, Flex, Groovy, JavaScript,
Python, PL/SQL, COBOL, Swift, etc.

B.2.12.2 Open Source

Yes.

B.2.12.3 Operating System

Cross Platform.

B.2.12.4 Free

Yes.

B.2.12.5 Licence

GNU GPL.

B.2.12.6 Reference

www.sonarqube.org

B.2.12.7 Extendibility

Integrates with Eclipse, Visual Studio and IntelliJ IDEA development environments through the
SonarLint plugins , Integrates with external tools: LDAP, Active Directory, GitHub.

B.2.12.8 Functionality supported

Source Code Testing.

B.2.12.9 Languages supported

Java (including Android), C/C++, Objective-C, C#, PHP, Flex, Groovy, JavaScript, Python, PL/SQL,
COBOL, Swift.

B.2.12.10 Language implemented

Java, Ruby.

B.2.12.11 Community behind it (in case of OS)

Sonarsource (https://www.sonarsource.com/).

B.3. Phase: Testing

B.3.1. Tool Name: Junit

B.3.1.1 Description

JUnit is a set of libraries created by Erich Gamma and Kent Beck that are used in programming to do
unit tests of Java applications. JUnit is a set of classes (framework) that allows to execute the
execution of Java classes in a controlled way, to be able to evaluate if the operation of each one of
the methods of the class behaves as expected. That is, depending on some input value the expected
return value is evaluated; If the class meets the specification, then JUnit will return that the class

http://sonarqube.org/
https://en.wikipedia.org/wiki/Eclipse_%28software%29
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Apache_Flex
https://en.wikipedia.org/wiki/Groovy_%28programming_language%29
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Python_%28programming_language%29
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Swift_%28programming_language%29

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 67 of 73

www.decide-h2020.eu

method successfully passed the test; In case the expected value is different than the method
returned during execution, JUnit will return a failure in the corresponding method. JUnit is also a
means of controlling the regression tests needed when a part of the code has been modified and it is
desired to see that the new code meets the above requirements and that its functionality has not
been altered after the new modification. The framework itself includes ways to see the results
(runners) that can be in text, graphic (AWT or Swing) or as an Ant task. Currently development tools
such as NetBeans and Eclipse have plug-ins that allow the generation of the necessary templates for
the creation of the tests of a Java class is done automatically, making it easier for the programmer to
focus on the test and the expected result, and leaving to the tool the creation of the classes that
allow to coordinate the tests.

B.3.1.2 Open Source

Yes.

B.3.1.3 Operating System

Cross platform.

B.3.1.4 Free

Yes.

B.3.1.5 Licence

GPL.

B.3.1.6 Reference

http://junit.sourceforge.net/

B.3.1.7 Extendibility

JUnit alternatives have been written in other languages including:

Actionscript (FlexUnit), Ada (AUnit), C (CUnit), C# (NUnit), C++ (CPPUnit, CxxTest), Coldfusion
(MXUnit), Erlang (EUnit), Eiffel (Auto-Test) - JUnit inspired getest (from Gobosoft), which led to
Auto-Test in Eiffel Studio.

Fortran (fUnit, pFUnit), Delphi (DUnit), Free Pascal (FPCUnit), Haskell (HUnit), JavaScript
(JSUnit), Microsoft .NET (NUnit), Objective-C (OCUnit), OCaml (OUnit) Perl (Test::Class and
Test::Unit), PHP (PHPUnit), Python (PyUnit), Qt (QTestLib) , R (RUnit), Ruby (Test::Unit).

B.3.1.8 Functionality supported

Unit testing framework.

B.3.1.9 Languages supported

Java (see extensions).

B.3.1.10 Language implemented

Java.

B.3.1.11 Community behind it (in case of OS)

http://junit.sourceforge.net/
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 68 of 73

www.decide-h2020.eu

http://junit.org/junit4/

B.3.2. Tool Name: Mockito

B.3.2.1 Description

Mockito is an open source testing framework for Java released under the MIT License. The
framework allows the creation of test double objects (mock objects) in automated unit tests for the
purpose of Test-driven Development (TDD) or Behaviour Driven Development (BDD).In software
development there is an opportunity of ensuring that objects perform the behaviours that are
expected of them. One approach is to create a test automation framework that actually exercises
each of those behaviours and verifies that it performs as expected, even after it is changed. However,
the requirement to create an entire testing framework is often an onerous task that requires as
much effort as writing the original objects that were supposed to be tested. For that reason,
developers have created mock testing frameworks. These effectively fake some external
dependencies so that the object being tested has a consistent interaction with its outside
dependencies. Mockito intends to streamline the delivery of these external dependencies that are
not subjects of the test. A study performed in 2013 on 10,000 GitHub projects found that Mockito is
the 9th most popular Java library.

B.3.2.2 Open Source

Yes.

B.3.2.3 Operating System

Cross platform.

B.3.2.4 Free

Yes.

B.3.2.5 Licence

MIT.

B.3.2.6 Reference

https://github.com/mockito/mockito

B.3.2.7 Functionality supported

Testing Framework for Java.

B.3.2.8 Languages supported

Java.

B.3.2.9 Language implemented

Java.

B.3.2.10 Community behind it (in case of OS)

http://site.mockito.org/

B.3.3. Tool Name: Arquillian

http://junit.org/junit4/

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 69 of 73

www.decide-h2020.eu

B.3.3.1 Description

Arquillian Eclipse is a JBoss Tools component that makes it simple to create and maintain Arquillian
tests. It provides adding Arquillian artifacts to a project as well as creating, validating and running
Arquillian JUnit tests. The mission of the Arquillian project is to provide a simple test harness that
developers can use to produce a broad range of integration tests for their Java applications (most
likely enterprise applications). A test case may be executed within the container, deployed alongside
the code under test, or by coordinating with the container, acting as a client to the deployed code.
Arquillian defines two styles of container, remote and embedded. A remote container resides in a
separate JVM from the test runner. Its lifecycle may be managed by Arquillian, or Arquillian may bind
to a container that is already started. An embedded container resides in the same JVM and is mostly
likely managed by Arquillian. Containers can be further classified by their capabilities. Examples
include a fully compliant Java EE application server (e.g., GlassFish, JBoss AS, Embedded GlassFish), a
Servlet container (e.g., Tomcat, Jetty) and a bean container (e.g., Weld SE). Arquillian ensures that
the container used for testing is pluggable, so the developer is not locked into a proprietary testing
environment. At the core, Arquillian provides a custom test runner for JUnit and TestNG that turns
control of the test execution lifecycle from the unit testing framework to Arquillian. From there,
Arquillian can delegate to service providers to setup the environment to execute the tests inside or
against the container. An Arquillian test case looks just like a regular JUnit or TestNG test case with
two declarative enhancements. Since Arquillian works by replacing the test runner, Arquillian tests
can be executed using existing test IDE, Ant and Maven test plugins without any special
configuration. Test results are reported just like you would expect. Using Arquillian is no more
complicated than basic unit testing. Three aspects of an Arquillian test case are: Container: a runtime
environment for a deployment. Deployment: the process of dispatching an artifact to a container to
make it operational. Archive: a packaged assembly of code, configuration and resources.

B.3.3.2 Open Source

Yes.

B.3.3.3 Operating System

Cross platform.

B.3.3.4 Free

Yes.

B.3.3.5 Licence

Apache 2.0.

B.3.3.6 Reference

http://arquillian.org/

B.3.3.7 Functionality supported

Testing of Java microservices.

B.3.3.8 Languages supported

Java.

B.3.3.9 Language implemented

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 70 of 73

www.decide-h2020.eu

Java.

B.3.3.10 Community behind it (in case of OS)

Arquillian Community.

B.3.4. Tool Name: TestNG

B.3.4.1 Description

TestNG is a testing framework for the Java programming language created by Cédric Beust and
inspired by JUnit and NUnit. The design goal of TestNG is to cover a wider range of test categories:
unit, functional, end-to-end, integration, etc., with more powerful and easy-to-use functionalities.

B.3.4.2 Open Source

Yes.

B.3.4.3 Operating System

Cross platform.

B.3.4.4 Free

Yes.

B.3.4.5 Licence

Apache 2.0.

B.3.4.6 Reference

http://testng.org/doc/

B.3.4.7 Functionality supported

Testing Platform for Java.

B.3.4.8 Languages supported

Java.

B.3.4.9 Language implemented

Java.

B.3.4.10 Community behind it (in case of OS)

TestNG.org

B.4. Comparison table

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 71 of 73

www.decide-h2020.eu

Tool Name Open
Source

Operating
System

Free License Usability (ease of
use)

Functionality Supported Languages Supported Language
Implemente

d

Eclipse Yes Linux,
MacOS,
Solaris,
Windows

Yes EPL Eclipse provides
the Rich Client
Platform (RCP) for
developing
general purpose
applications.

IDE Ada , C/C++, D , Fortran,
Groovy, Haskell, Java ,
JavaScript , Lua , Perl,
PHP, Ruby, Scala , Tcl.

Java, ANSI C,
C++,JSP,
Bourne shell
,perl, php,
sed.

Netbeans Yes Windows,
Mac OS X,
Linux,
Solaris

Yes CCDL/GPL The NetBeans Platform is
a framework for
simplifying the
development of Java
Swing desktop
applications. The
NetBeans IDE bundle for
Java SE contains what is
needed to start
developing NetBeans
plugins and NetBeans
Platform based
applications; no
additional SDK is
required.

D, Fortran, Groovy,
Java, Javascript, Perl,
Php, Python, Ruby,
Scala

Java

Ant Yes Cross
platform

Yes Apache 2.0 Automatic Software Built
processes

Java Java, XML

Maven Yes Cross
platform

Yes Apache 2.0 Automatic Software Built
processes and Project
Management

Java Java

Gitlab Yes Cross
platform

Commercia
l and
Community

MIT Web-based Git repository
manager

 Ruby, Go

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 72 of 73

www.decide-h2020.eu

Tool Name Open
Source

Operating
System

Free License Usability (ease of
use)

Functionality Supported Languages Supported Language
Implemente

d

Subversion Yes Cross
platform

Yes Apache 2.0 Software versioning and
revision control system

Python, Perl, Java, Ruby C

Git Yes POSIX:
Linux,
Windows,
macOS,
Solaris,
BSD

Yes GNU GPL
v2

 Software versioning and
revision control system

Java (JGit) , JScript (JS-
Git) , Ruby, Python, and
Haskell

C, Shell, Perl,
Tcl, Python

Jenkins Yes Cross
platform

Yes MIT Continuous integration
Tool

Android, C/C++, Java,
Python, Ruby

Java

Docker Yes Linux,
Windows,
Macos

Yes Apache 2.0 Automates the
deployment of
applications inside
software containers

 Java

Portainer Yes Cross
platform

Yes Apache 2.0 It manages Docker
containers, images,
networks and volumes via
Dashboard.
It allows to deploy
containers from a
template list that includes
MySQL, MariaDB,
PostgreSQL, Drupal,
Jenkins, Odoo, Redmine,
Magento

 Go

Nagios
Core

Yes Cross
platform

Yes GNU GPL
V2

 Network Monitoring C

D2.1 – Detailed Requirements Specification Version 1.0 – Final. Date: 31.05.2017

© DECIDE Consortium Contract No. GA 731533 Page 73 of 73

www.decide-h2020.eu

Tool Name Open
Source

Operating
System

Free License Usability (ease of
use)

Functionality Supported Languages Supported Language
Implemente

d

Pfsense Yes Cross
Platform,
can be
installed
on
hardware
with x86
or x86-64
architectu
re

Yes Apache 2.0 Opensource
firewall/router software

 FreeBSD

Zabbix Yes Cross
platform

Yes GNU GPL
V2

 Network Monitoring C

sonarqube Yes Cross
platform

Yes GNU GPL Source Code Testing Java (including
Android), C/C++,
Objective-C, C#, PHP,
Flex, Groovy, JavaScript,
Python, PL/SQL, COBOL,
Swift.

Java, ruby

Junit Yes Cross
platform

Yes GPL Unit testing framework Java

Mockito Yes Cross
platform

Yes MIT Testing Framework for
Java

Java Java

Arquillian Yes Cross
platform

Yes Apache 2.0 Testing Framework Java Java

TestNG Yes Cross
platform

Yes Apache 2.0 Testing Platform for Java Java Java

