
D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 1 of 41

www.decide-h2020.eu

Deliverable D3.14

Intermediate multi-cloud native application composite CSLA
definition

Editor(s): Simon Dutkowski

Responsible Partner: Fraunhofer

Status-Version: Final – v1.0

Date: 23/11/2018

Distribution level (CO, PU): CO

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 2 of 41

www.decide-h2020.eu

Project Number: GA 726755

Project Title: DECIDE

Title of Deliverable:
D3.14 Intermediate multi-cloud native application
composite CSLA definition

Due Date of Delivery to the EC: 30/11/2018

Workpackage responsible for the
Deliverable:

WP3 - Continuous Architecting

Editor(s): Fraunhofer

Contributor(s):
Lena Farid (Fraunhofer)
Simon Dutkowski (Fraunhofer)

Reviewer(s): Marisa Escalante (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP5, WP4, WP2

Abstract: This software deliverable will comprise the intermediate
version of a tool to derive composite SLAs from
elementary ones. For this, a description formalism will
be defined and extended if needed. Range definition for
SLA metric values, composition and matching rules will
be defined and implemented.

Keyword List: MCSLA, SLA, SLO, SQO, Editor, Multi Cloud,

Licensing information: The software is licensed under the Eclipse Public License
version 2.0

The document itself is delivered as a description for the
European Commission about the released software, so
it is not public.

Disclaimer This deliverable reflects only the author’s views and the
Commission is not responsible for any use that may be
made of the information contained therein

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 3 of 41

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 17/09/2018 First draft version ToC and MCSLA
data model

FhG

v0.2 07/11/2018 Additional chapter for functionality of
MCSLA Editor

FhG

v0.3 14/11/2018 Reviewed and actualized the User
Manual

FhG

v0.4 19/11/2018 Configuration and Installation
Executive Summary

FhG

v0.5 21/11/2018 Internal review TECNALIA

v0.6 23/11/2018 Final editing before release FhG

V1.0 23/11/2018 Ready for submission TECNALIA

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 4 of 41

www.decide-h2020.eu

Table of Contents

Document Description .. 3

Table of Contents .. 4

List of Figures ... 6

List of Tables .. 7

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction ... 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

2 MCSLA Concept ... 11

2.1 Make up of a MCSLA ... 11

2.2 SLA Aggregation Patterns .. 12

2.2.1 SLA Aggregation Patterns for Availability .. 14

3 Implementation ... 17

3.1 Functional description ... 17

3.1.1 Fitting into overall DECIDE Architecture ... 18

3.2 Technical description ... 19

3.2.1 Prototype Architecture .. 19

3.2.2 Predefined Expressions ... 21

3.2.3 REST Interface.. 21

3.2.4 MCSLA Data Model .. 22

4 Delivery and usage .. 28

4.1 Configuration and Installation instructions ... 28

4.1.1 MCSLA Core (Shared Library) .. 28

4.1.1.1 Build the library ... 28

4.1.1.2 Install the library .. 28

4.1.2 MCSLA Service (Backend) .. 29

4.1.2.1 Build the service .. 29

4.1.2.2 Service configuration ... 29

4.1.2.3 Run the service .. 29

4.1.2.4 Docker ... 29

4.1.3 MCSLA UI (Frontend) ... 29

4.1.3.1 MCSLA UI configuration .. 29

4.1.3.2 Build the UI .. 30

4.1.3.3 Install and run .. 30

4.1.3.4 Docker ... 31

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 5 of 41

www.decide-h2020.eu

4.2 User Manual .. 31

4.2.1 MCSLA Core Library usage ... 31

4.2.1.1 Getting started .. 31

4.2.1.2 The Interface ... 31

4.2.2 MCSLA UI ... 35

4.2.2.1 Add Service Objectives .. 38

4.2.2.2 Edit Service Objectives .. 38

4.2.2.3 Deleting Service Objectives ... 38

4.2.2.4 Commit or reset the SLA ... 38

4.2.2.5 Cloud Services SLAs ... 39

4.3 Licensing information .. 39

4.4 Download .. 39

5 Conclusions .. 40

5.1 Future work ... 40

6 References ... 41

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 6 of 41

www.decide-h2020.eu

List of Figures

FIGURE 1. CONCEPTUAL IDEA – MAKE UP OF AN MCSLA ... 12
FIGURE 2. TERM COMPOSITION USING AGGREGATION PATTERNS [2] ... 13
FIGURE 3. BASIC MULTI-CLOUD DEPLOYMENT TOPOLOGY ... 14
FIGURE 4. MULTI-CLOUD REPLICATION DEPLOYMENT TOPOLOGY ... 15
FIGURE 5. DIFFERENT VENDORS TOPOLOGY .. 16
FIGURE 6. DECIDE GENERIC ARCHITECTURE ... 18
FIGURE 7. COMPONENT DIAGRAM FOR MCSLA EDITOR ... 19
FIGURE 8. SEQUENCE DIAGRAM FOR CREATING AN MCSLA .. 20
FIGURE 9. MCSLA DATA MODEL ... 23
FIGURE 10. THE INITIAL MCSLA EDITOR PAGE ... 30
FIGURE 11. GIT REPOSITORY DIALOG .. 35
FIGURE 12. GENERAL INFORMATION PAGE ... 36
FIGURE 13. THE JSON VIEW PAGE ... 37
FIGURE 14. THE SLA EDITOR PAGE ... 37
FIGURE 15. EXPANDED SERVICE OBJECTIVE .. 38

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 7 of 41

www.decide-h2020.eu

List of Tables

TABLE 1. FUNCTIONALITIES OPPOSED TO REQUIREMENTS ... 17
TABLE 2. REST INTERFACE PROVIDED BY THE MCSLA SERVICE .. 22
TABLE 3. APPLICATION DESCRIPTION MODEL FOR MONITORING THE APPLICATION VIA ITS MCSLA 23
TABLE 4. PROPERTIES OF ELEMENT TYPE SLA .. 24
TABLE 5. PROPERTIES OF ELEMENT TYPE SERVICEOBJECTIVE ... 24
TABLE 6. PROPERTIES OF ELEMENT TYPE VIOLATIONTRIGGERRULE ... 25
TABLE 7. PROPERTIES OF ELEMENT TYPE REMEDY .. 25
TABLE 8. PROPERTIES OF ELEMENT TYPE METRIC .. 25
TABLE 9. PROPERTIES OF THE EXPRESSION ELEMENT TYPE ... 26
TABLE 10. PROPERTIES OF THE PARAMETER ELEMENT TYPE .. 27
TABLE 11. PROPERTIES OF THE RULE ELEMENT TYPE .. 27
TABLE 12. ENUMERATION VALUES FOR PREDEFINED EXPRESSIONS ... 33
TABLE 13. ENUMERATION VALUES FOR CONDITION STATEMENTS ... 34
TABLE 14. QUERY PARAMETERS FOR THE FRONTEND ... 35

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 8 of 41

www.decide-h2020.eu

Terms and abbreviations

ACSmI Advance Cloud Service meta-Intermediator

ADAPT Application Deployment and Adaptation

API Application Programming Interface

CO Confidential

CRUD Create, read, update, delete

CSLA Composite Service Level Agreement

CSP Cloud Service Provider

DECIDE DEvOps for trusted, portable and interoperable multi-Cloud applications

towards the Digital singlE market

DevOps Development and Operation

EC European Commission

GA Grant Agreement

GUI Graphical User Interface

HTTP Hypertext Transport Protocol

IaaS Infrastructure as-a-Service

ID Identifier

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JSON JavaScript Object Notation

MCSLA Multi-cloud Application Service Level Agreement

MTBF Meantime between failure

MTTR Meantime to recover

NFR Non-Functional Requirement

OMG Open Management Group

PDF Portable Document Format

PU Public

QoS Quality of Service

REST Representational State Transfer

SaaS Software as-a- Service

SBVR Semantics of Business Vocabulary and Rules

SLA Service Level Agreement

SLO Service Level Objective

SPA Single Page Application

SQL Structured Query Language

SQO Service Qualitative Objective

ToC Table of Content

UI User Interface

URL Uniform Resource Locator

WS Web Service

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 9 of 41

www.decide-h2020.eu

Executive Summary

The MCSLA Editor plays a vital role in the DECIDE project as it defines the agreement between the
multi-cloud native application developer and the end-user of the application services. Furthermore, it
is in a standards-based machine-readable form that allows for other DECIDE tools such as ADAPT to
monitor the application and assess whether the expected QoS is guaranteed.

One of the main innovations of this component is the adaptation of the upcoming ISO/IEC 19086
standard, especially of part 2 [1], which describes a technical machine-readable model for metrics. By
providing SLAs in a standardized format, cloud service providers and their services are better
comparable for customers. A common machine-readable format also enables the implementation of
aggregation patterns for SLAs of different cloud service providers in service composition scenarios [2].

The document at hand describes the second draft version of the prototype and the representation of
the machine-readable MCSLA definition adapted from the ISO standard. It is a revised version of the
initial document with the same title [3] and contains content that is reused. The prototype includes a
backend and frontend that communicate via a restful interface. The prototype allows developers to
define the MCSLA through a convenient graphical user interface.

The document also describes the conceptual work done for the MCSLA. This includes the makeup of
the MCSLA and its properties. Furthermore, the functional and technical properties of the prototype
are laid out along with the build and installation instructions. A user manual is added to the document
to explain the usage of the user frontend.

In addition to the first version “Initial multi-cloud native application composite CSLA definition”, D3.1
[3], this intermediate document extends the first prototype with the integration into the DevOps
Framework and the connection to the ACSmI discovery service. Aggregation patterns identified and
defined so far are now practically implemented. In addition, the portfolio of service objective metrics
and calculation expressions is completed to support all monitoring scenarios in the context of DECIDE.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 10 of 41

www.decide-h2020.eu

1 Introduction

1.1 About this deliverable

The document at hand represents the documentation for the prototype delivered at M24 for the task
T3.5 Multi-cloud native application composite SLA description. It also presents concepts that have
been defined within this task for the MCSLA definition.

1.2 Document structure

This document is divided into four main sections. Section 2 presents the MCSLA concept defined in the
project. It describes the makeup of an MCSLA, its properties and the Aggregation Patterns for the
different deployment topologies. Section 3 describes the implementation details from a functional and
technical perspective and section 4 describes the build and installation instructions as well as the user
manual for using the tool.

Finally, at the end of the document, section 5 concludes on the outcome of M24 and presents future
work to be done.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 11 of 41

www.decide-h2020.eu

2 MCSLA Concept

It is defined in the DECIDE project that once the multi-cloud native application is implemented and is
ready for deployment, i.e. the most optimal deployment topology has been selected, an MCSLA has to
be defined. The purpose of the MCSLA is twofold: i) it acts as the contract between the end-users and
the developer of the multi-cloud native application and ii) it is used for monitoring purposes by ADAPT
and ACSmI and will be assessed in runtime to ensure it is being accomplished.

In order for the latter to be realised the task T3.5 of WP3 is responsible for implementing the following
two main points:

1. Enable the seamless composition of an MCSLA via an editor. This should also support the
composition of MCSLAs when an application is self-adapted to a new deployment topology.

2. Define a standard-based machine-readable format for an MCSLA in order to be processed by
the DECIDE tools.

2.1 Make up of a MCSLA

The accumulation of a number of SLAs from different CSPs is defined in the DECIDE project as a multi-
cloud native application composite SLA (MCSLA).

A cloud SLA is typically composed of a number of Service Qualitative Objectives (SQO) and Service Level
Objectives (SLO) as defined in ISO/IEC 19086-1 [4]. The SLOs and SQOs represent, among others, the
non-functional requirements of an application and its underlying infrastructure. We will refer to them
as terms.

In the multi-cloud context, the deployment of the microservices of an application take place on several
CSPs. Each CSP contracted shares with the developer an SLA that guarantees an expected quality of
service (QoS) of the cloud service in use. Therefore, in a multi-cloud deployment scenario there will be
at least two of these agreements. These agreements might differ in their content but might also include
same terms (SLOs or SQOs) but with different values.

An MCSLA must therefore act as an aggregator of all terms defined in the various SLAs. If term occurs
in several different SLAs, the values of the term must be aggregated (based on defined mathematical
functions). For example, if the SLO Availability occurs in one SLA with a value of 99% and in another
with a value of 99%. Then the MCSLA should contain the SLO Availability with the value of 98% (formula
is presented in Section 2.2). This is in essence the maximum value for availability that the developer
may offer to the end-user, as it is not guaranteed that an outage would take place across all
microservices (or CSPs for that matter) at the same time.

Concerning end-users, the developer may also define application specific terms. These additional
terms pertain to the application, are consumer-oriented and not derived from the CSP SLAs. These can
be terms the developer needs monitored and/or agreed with the end-user. An example would be the
application’s response time. A graphical representation of this approach is shown in Figure 11.

Furthermore, it is important for the MCSLA to reflect the diversity in the contracted SLAs on CSP level
and the system hierarchy (IaaS, SaaS) – these need to be consolidated.

Moreover, an SLA term can be hard or soft. This is important for monitoring purposes. Hard terms are
to be observed at all time, those declared as soft do not pose a major risk.

Another aspect concerning an MCSLA is re-deployment. Once an MCSLA has been set and
communicated to the end-user, certain terms should not be changed. A solution would be to define
two layers: an external one, which has to be respected and cannot be changed when a re-deployment
should take place, and an "internal" one that collects the SLAs from the various providers where the

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 12 of 41

www.decide-h2020.eu

application has been or will be deployed. The external SLA is a composition of the SLAs in the internal
part, plus the application SLOs. In case of a candidate redeployment involving different services or
CSPs, the internal SLAs change accordingly, but their composition should still satisfy the external SLA
for the candidate to be acceptable. If no such candidate exists, the adaptation (i.e. re-deployment)
fails.

Figure 1. Conceptual Idea – Make up of an MCSLA

2.2 SLA Aggregation Patterns

In a multi-cloud deployment scenario, a minimum of two microservices are expected to be deployed
on different CSPs or on different cloud services of the same CSP. In this case, there will be at least two
SLAs contracted for the developer of the multi-cloud native application. As previously stated, these
agreements might differ in their content but might include the same terms (SLOs) but with different
values.

In order to reduce the complexity of managing a multitude of cloud services and cloud services
provider, SLA Aggregation Patterns complemented with an aggregation engine are needed.

An SLA Aggregation Pattern [2] is a mathematical function that computes several terms into one
aggregated term.

In [2], they introduce a type which extends the WS-Agreement [5] specification, which labels specific
SLA terms with a type in order to be able to calculate and help automate the SLAs.

As the DECIDE project is not following the WS-Agreement specification but ISO/IEC 19086 1 (parts 1-4)
[4, 1, 6, 7], it may result fruitful to check if such a type is also required there. In any case, these types

1 Part 2 and 4 are still under development.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 13 of 41

www.decide-h2020.eu

can also be internally depicted in ACSmI and the MCSLA Editor. This will be investigated in the coming
iteration of this task.

In [2] seven Aggregation Patterns are defined as types2

𝑇𝑦𝑝𝑒𝑠 = {𝑠𝑢𝑚𝑡𝑦𝑝𝑒, 𝑚𝑎𝑥𝑡𝑦𝑝𝑒, 𝑚𝑖𝑛𝑡𝑦𝑝𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑂𝑅𝑡𝑦𝑝𝑒, 𝐴𝑁𝐷𝑡𝑦𝑝𝑒, 𝑋𝑂𝑅𝑡𝑦𝑝𝑒}

Figure 2. Term composition using Aggregation Patterns [2]

Figure 22 depicts the aforementioned types, the following three types are relevant in DECIDE context:

The sumtype function (denoted as ∑ in Figure 22) defined as

𝑠𝑢𝑚𝑡𝑦𝑝𝑒 ∈ 𝑇𝑦𝑝𝑒𝑠(⟺ 𝑠𝑢𝑚𝑡𝑦𝑝𝑒 ∶ 𝑃(𝑇𝑒𝑟𝑚𝑠) → 𝑇𝑒𝑟𝑚𝑠)

𝑠𝑢𝑚𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = ∑ 𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

𝑛

𝑖=1

can be used to calculate terms for storage space, memory, availability and cost in a deployment
environment where all microservices are deployed on the same machine. Moreover, it assumes that
all microservices will fail simultaneously, which is rarely the case. Therefore, it makes sense to extend
this list with an additional type to fulfil DECIDE’s needs in a multi-cloud context.

The mintype function defined as

𝑚𝑖𝑛𝑡𝑦𝑝𝑒 ∈ 𝑇𝑦𝑝𝑒𝑠(⟺ 𝑚𝑖𝑛𝑡𝑦𝑝𝑒 ∶ 𝑃(𝑇𝑒𝑟𝑚𝑠) → 𝑇𝑒𝑟𝑚𝑠)
𝑚𝑖𝑛𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = min

1≤𝑖≤𝑛
𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

is an aggregation function that aggregates a number of terms into one term. The minimum of these
terms is picked up and ultimately represents the aggregation of the input terms. Therefore, the only
term having the minimum value will contribute to the final term in the MSCLA. A good example is given
in [2], which is that for the bandwidth: “In a sequence of activities the activity pertaining to the
minimum bandwidth will become the bottleneck for the whole sequence making other activities with
higher bandwidth ineffective.”

The ORType function defined as

2 For the full formalisation please see [3]

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 14 of 41

www.decide-h2020.eu

𝑂𝑅𝑡𝑦𝑝𝑒 ∈ 𝑇𝑦𝑝𝑒𝑠 (⟺ 𝑂𝑅𝑡𝑦𝑝𝑒 ∶ 𝑃(𝑇𝑒𝑟𝑚𝑠) → 𝑇𝑒𝑟𝑚𝑠)

𝑂𝑅𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = ⋁ 𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

𝑛

𝑖=1

ORtype is an aggregation function that aggregates a number of terms into one or more terms. It does
so by applying a logical OR function on these terms and the result represents the aggregation of all the
input terms. For instance, an application developer who wants to aggregate services of varying
qualities but would also like to segregate them under different levels of SLAs, may use the ORtype
aggregation function to fulfil his needs.

An example could be a reseller who buys computational resources of different speeds and qualities
from different vendors and aggregates them using ORtype function so that later, he can offer SLAs of
different levels such as gold, silver or bronze, etc. to its consumers. This might prove interesting for
developers and will be investigated how it is optimally used in the project.

2.2.1 SLA Aggregation Patterns for Availability

In this section we look at how to use these Aggregation Patterns for the NFR availability. The following
patterns also take into consideration the different deployment topologies. In the next iteration of this
deliverable, more Aggregation Patterns will be presented.

Availability is probably the most important single metric that can be used to measure the performance
of a service. It shows the time or percentage the service is operational and responding.

The following section gives examples using the three selected Aggregation Patterns for Availability.

Aggregated availability the sumType pattern in a basic multi-cloud environment

This example (see Figure 33) for availability includes a web site, a SQL database and table storage. The
deployment has taken place on three different cloud services on three different CSPs. For the
application to function as intended, each of these components must be working. They also each have
a 99.9% availability guaranteed in their SLA. It cannot be assumed that the components will fail
simultaneously, but at different times. This means that the summation of all terms using the sumtype
function described above is insufficient and would yield a false value for Availability.

Figure 3. Basic multi-cloud deployment topology

Therefore, it is necessary to extend the list of types presented above with the following function to be
applied for this deployment topology:

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 15 of 41

www.decide-h2020.eu

𝑚𝑐𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = 100% − ∑(100% − 𝑡𝑒𝑟𝑚𝑖)

𝑛

𝑖=1

The function takes a number of terms and creates a sum of the “unavailability” of all terms and deducts
it from the optimal value for availability.

Example result would be as follows:

𝑚𝑐𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(99,9%, 99,9%, 99,9%) = 99,7%

Aggregated availability the MINtype pattern in replication deployment topology

In this example for availability, there is a web site, which is replicated on two CSPs in different Regions.

Figure 4. Multi-cloud replication deployment topology

In this example it is only viable to select the minimum term value based on the deployment topology.
Otherwise, the availability term in the MCSLA would be false as it cannot be guaranteed.

The function to be applied for this deployment topology is as follows:

𝑚𝑖𝑛𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚𝑖, … 𝑡𝑒𝑟𝑚𝑛) = min
1≤𝑖≤𝑛

 𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

Example result would be as follows:

𝑚𝑖𝑛𝑡𝑦𝑝𝑒(99,9%, 99,8%) = 99,8%

Aggregated SLAs uptime the ORtype pattern for service composition from different vendors

In this example, a generic database accesses two different SQL servers. One enjoys a 99,9% availability
and the other only 99,7% availability. The deployment as depicted in Figure 55 is across two different
CSPs.

The developer may include, as described before, different plans for the consumers (e.g. bronze, silver,
gold) and derive these from the different guaranteed quality for availability. Therefore, the developer
can choose which server is part of which plan by integrating the respective availability value in the
MCSLA.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 16 of 41

www.decide-h2020.eu

Figure 5. Different vendors topology

The function to be applied for this deployment topology is as follows:

𝑂𝑅𝑡𝑦𝑝𝑒(𝑡𝑒𝑟𝑚1, … 𝑡𝑒𝑟𝑚𝑛) = ⋁ 𝑡𝑒𝑟𝑚𝑖. 𝑡𝑒𝑟𝑚𝑠. 𝑣𝑎𝑙𝑢𝑒

𝑛

𝑖=1

Example result would be as follows:

𝑂𝑅𝑡𝑦𝑝𝑒(99,7%, 99,9%) = 99,9%

𝑂𝑅𝑡𝑦𝑝𝑒(99,7%, 99,9%) = 99,7%

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 17 of 41

www.decide-h2020.eu

3 Implementation

3.1 Functional description

The MCSLA Editor provides a tool for the authoring of a MCSLA to be used as a contract between the
end-user of the application and the application owner, i.e. developer. Furthermore, the MCSLA is
designed in a machine-readable format that describes means to monitor and measure the application’s
NFRs in respect to all contracted SLAs of the cloud services.

The main functionalities for the MCSLA Editor are as follows:

F1. To provide supportive means for the developer to define the composite MCSLAs and the
corresponding service objectives (SLOs and SQOs) of the application. This includes:

a. Aggregation of the available terms in the various contracted SLAs using defined
mathematical formulas mapped to deployment topologies.

b. Allowing for editing an existing MCSLA after a re-deployment is recommended whilst
respecting the initial SLA

F2. To provide an interactive user interface for authoring an MCLSA
F3. To translate the MCSLA into a standards-based machine-readable form that includes a metrics

definition. The MCSLA adapts the ISO/IEC 19086-2 [1] specification for metrics.
F4. To translate the MCSLA into a human readable form.
F5. To maintain an interface to ACSmI for accessing the contracted SLAs
F6. Maintain access to the git repository of the application.
F7. To store the MCSLA definition as part of the Application Description in a git repository to be

accessed by the different DECIDE tools.
F8. To integrate the MCSLA Editor in the DECIDE DevOps Framework.

The MCSLA Editor will be implemented incrementally. The first version (M12) included the
functionalities F1 (partly), F2, F3, F6, and F7. The current version (M24) contains improvements and
finalisation of the previous list of functionalities and in addition F5 and F8. Moreover, the functionality
will evolve during the course of the project. The next release will include more detailed elements also
from a usability perspective, especially the covering of F4, which could be a PDF export of the MCSLA
for better readability. Table 11 opposes the defined requirements [8] for the MCSLA Editor to the listed
functionalities F1 to F8.

Table 1. Functionalities opposed to Requirements

Functionality Req. ID Coverage

F1

WP3-CSLA-REQ1 The MCSLA Editor provides the model and CRUD functionality
for the file and the mechanism for storing and accessing the
MCSLA. Aggregation rules are integrated into the
implementation of this prototype (M24).

F2
WP3-CSLA-REQ10
WP3-CSLA-REQ11

The MCSLA Editor is composed of a frontend and backend. The
frontend is a web-based tool.

F3
WP3-CSLA-REQ6
WP3-CSLA-REQ7

The MCSLA definition is in machine-readable form and follows
the standard ISO/IEC 19086-2 [1].

F4
WP3-CSLA-REQ6 It is considered to implement a PDF export in the next release

(M30).

F5
WP3-CSLA-REQ1 The MCSLA Editor utilizes the ACSmI discovery interface to

retrieve the cloud service SLAs for deployment scenarios.

F6 WP3-CSLA-REQ1 All the mechanisms for accessing the git repository are in place.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 18 of 41

www.decide-h2020.eu

Functionality Req. ID Coverage

F7
WP3-CSLA-REQ1 All the mechanisms for storing the MCSLA in the defined

application repository are in.

F8
WP3-CSLA-REQ9 The MSCLA Frontend is integrated in adjusted form into the

dashboard using the HTTP iframe tag.

The following list compiles the implemented functionality in M24:

• The MCSLA Editor has a web-based UI that allows the user to view all available SQOs and SLOs
and select from these terms the ones relevant for the application.

• The MCLSA frontend UI gives information for the user in identifying, where the terms come
from (which CSP).

• The MCSLA Editor initializes all service objectives depending of the developer’s defined NFRs
and the contracted SLAs for the different cloud services. It applies the appropriate aggregation
patterns to the metrics and adds the required formula expressions. The used metrics and
formula expressions to calculate the values are shown to the user for transparency reasons.

• The MCSLA Editor backend serves the UI and holds the model for the MCSLA, which is based
on the ISO/IEC19086-2 [1].

• The MCSLA Editor can read and write to git and can store the MCSLA structure in the target
application repository.

3.1.1 Fitting into overall DECIDE Architecture

The MSCLA Editor is crucial for the DECIDE DevOps Framework as it is part of the continuous operation
phase and lays the foundation for monitoring the multi-cloud native application as well as the
contracted cloud services, which may lead to imperative re-adaptation and re-deployment of the
application.

Furthermore, it serves as an interface (UI) through which the developers specify the multi-cloud SLAs
agreed with the end-users of the application. The MCSLA Editor provides the developer with all
possible SLOs and SQOs, which may partly incorporate default values, aggregated values or
overwritten values depending on those resulting from the contracted cloud services. This resulting
MCSLA serves as the contract between the developer and the end-users of the application.

The tool ADAPT is the main DECIDE tool that is dependent on the output of the MCSLA Editor. But also,
the MCSLA Editor is dependent on the ACSmI as it provides the initial set of SLAs that have been
contracted for a multi-cloud deployment scenario. When a re-deployment takes place another round
of interactions between the MCSLA Editor and ACSmI is required (see Figure 66).

Figure 6. DECIDE generic architecture

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 19 of 41

www.decide-h2020.eu

3.2 Technical description

This section describes the technical details of the implemented software for the current prototype of
the MCSLA Editor.

3.2.1 Prototype Architecture

The MSCLA Editor is a two-tier architecture represented by the MCSLA frontend and the backend
consisting of the MCSLA Service and the MCSLA Core Library. Figure 77 depicts the component diagram
for the MCSLA Editor.

Figure 7. Component diagram for MCSLA editor

MCSLA Frontend

The MCSLA Frontend is a user-facing component that enables the users to create, read, update and
delete MCLSAs in a visual and human readable manner. The frontend will be integrated into the
DevOps Dashboard. For this, the frontend provides a slim UI where the header bar and its own
navigation menu is omitted. The frontend communicates with the backend and uses defined REST
interfaces for accessing available SQOs and SLOs, aggregated values of SLAs as well as existing MCSLAs.
Available SLOs and SQOs are based on the ISO/IEC 19086-2 [1] and cover terms that are application
specific, rather than just provider specific.

MCSLA Service

The MCSLA Service is in charge of managing the MCSLA and holds its logical information model, it
communicates with the code git repository via the Application Controller in order to access the
Application Description and receive the ids of the cloud services where the multi-cloud application is
deployed on.

The MCSLA Service uses this information from the Application Description to access cloud services
related information via the interfaces provided by ACSmI. This information is in turn used to identify
the SLAs (SLOs) that need to be aggregated and represented in the MCSLA.

Furthermore, the MCSLA Service is in charge of storing a tagged version of the MCSLA in the code
repository for ADAPT to access and be able to monitor the application.

MCSLA Core Library

The MCSLA Core Library serves the MCSLA Service with the SLAs in order to accumulate and aggregate
the possible values for Service Objectives depending on the aggregation rules defined in the

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 20 of 41

www.decide-h2020.eu

component. For each deployment scenario detailed in the Application Description a specific
aggregation rule is specified and used to aggregate the values.

The following sequence diagram (Figure 88) depicts the communication and message exchange that
takes place between the MCSLA Editor components, external repositories and DECIDE tools (ACSmI).

Figure 8. Sequence diagram for creating an MCSLA

The sequences for creating an MCSLA are as follows:

1. The developer starts the MCSLA Frontend (GUI); this process calls the MCSLA Service in order
to populate the frontend with the necessary values.

2. As long as the MCSLA Editor as a whole is integrated into the dashboard, it is clear which
Application Description is applicable at this stage. The Application Description residing in a
repository will be accessed via the Application Controller to retrieve the currently used
deployment topology, i.e. the cloud service Ids.

3. With the cloud service Ids, the MCSLA Service contacts ACSmI in order to obtain the contracted
SLAs.

4. The MCSLA Service then utilizes the MCSLA Core Library to take the necessary measures to
aggregate the SLOs defined in each SLA.

5. Once this step is completed, the MCSLA Service populates the frontend with the available
SLO/SQOs and their possible values.

The developer then uses the GUI to create the MCSLA, which is in turn saved by the MCSLA Service in
the code repository as well as registering it in the Application Description.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 21 of 41

www.decide-h2020.eu

3.2.2 Predefined Expressions

In order to avoid implementing a complete ISO80000 [9] parser and interpreter, the MCSLA Editor
defines a set of predefined expressions that can be referenced from within the metrics description of
an applications MCSLA. They are neither part of the ISO 19086-2 [1] specification nor any other
standard. They are only used within the DECIDE project context.

EMPTY – An empty expression that does nothing and returns always a null evaluation result. It needs
to be checked if this can be aligned with a neutral aggregation pattern.

AVAILABILITY_UPTIME_BC – An expression that calculates the uptime (availability) during a specific
billing cycle. The corresponding formula is 100 - (billingCycle - totalDowntime)/billingCycle. Whereas
the total downtime is the sum of all downtimes during the billing cycle. Usually this is measured in
seconds or milliseconds where the service is not reachable.

AVAILABILITY_MTBFMTTR – An expression that calculates the availability based on the meantime
between failure and meantime to recover values. The formula is 100 * MTBF/(MTBF + MTTR).

AVAILABILITY_AGGREGATION_SUMTYPE – An expression that calculates the special sumtype
aggregation pattern for availability as described in chapter 2.2.1.

AGGREGATION_MINTYPE – An expression that calculates the mintype aggregation pattern as
described in chapter 2.2.

AGGREGATION_MAXTYPE – An expression that calculates the maxtype aggregation pattern as
described in chapter 2.2.

AGGREGATION_SUMTYPE – An expression that calculates the standard sumtype aggregation pattern
as described in chapter 2.2.

To install a predefined expression in a metric as part of a service objective it is needed to set the
expressionLanguage property of the Expression element to “predefined”. The value of the property
“expression” identifies the predefined expression that should be used in the metric:

{

 "id": "CSA_AV_001",

 "descriptor": "Aggregation of microservices",

 "scale": "ratio",

 "expression": {

 "expression": "AVAILABILITY_AGGREGATION_SUMTYPE",

 "expressionLanguage": "predefined",

 "unit": "percentage"

 }

}

The list of predefined expressions is currently limited mostly to the prioritised patterns that are
required for the addressed scenarios Availability and Performance.

3.2.3 REST Interface

The backend provides the following operations described below in brief. Each operation produces and
consumes JSON. The interface documentation will be generated using the OpenAPI specification
version 3 [10] and is available online.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 22 of 41

www.decide-h2020.eu

Table 2. REST interface provided by the MCSLA Service

HTTP
Verb

URL Description

GET /applications/init?{query params} Initialize an application context for
further processing. It returns the
applications mcsla context to the
client.

GET /applications/{name} Get the mcsla context of the
application with the name {name}.

GET /applications/{name}/reset Resets any modifications and
revert to the head of the remote
project repository.

POST /applications/{name}/mcsla Update the mcsla element for the
application with the name {name}.

GET /applications/{name}/mcsla/{termName}/aggregate Aggregate a specific service
objective identified through the
term name.

The MCSLA Service provides also a Web page displaying the documentation of this OpenAPI 3 [10]
based REST API using the ReDoc [11] framework. The page can be reached on the root context (“/”)
(see chapter 4.1.2.3).

3.2.4 MCSLA Data Model

The data model for an MCSLA is depicted below in Figure 99 and serves as a reference.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 23 of 41

www.decide-h2020.eu

Figure 9. MCSLA Data Model

The following tables describe the MCSLA model for monitoring with a brief description for each field
based on the standard ISO19086-2 [1]. Table 33 describes the nested elements for the MCSLA. The
MCSLA editor is responsible for eliciting this information from the user.

Table 3. Application description model for monitoring the application via its MCSLA

Element Name Mcsla

Description The aggregated SLAs as MCSLA

Property Type Cardinality Definition

sla Sla 1..1 The SLA towards the end-customer of the
application

csSlas Array of Sla 1..n The cloud service SLAs as provided by the
cloud service providers

The following Table 44 describes the properties of element type Sla.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 24 of 41

www.decide-h2020.eu

Table 4. Properties of element type Sla

Element Name Sla

Description General information about an SLA

Property Type Cardinality Definition

description String 1..1 A description about the context of the
SLA

visibility String 0..1 public or private

validityPeriod Integer 0..1 The validity period of the SLA in days

coveredServices Array of String 0..n Named services that the SLA covers

objectives Array of
ServiceObjective

1..n The list of service objectives composing
the SLA

The following Table 55 describes the properties of element type ServiceObjective.

Table 5. Properties of element type ServiceObjective

Element Name ServiceObjective

Description General information about service objectives

Property Type Cardinality Definition

termName String 1..1 Name of the term to which it refers to

type Enumeration 0..1 - slo
- sqo

comment String 0..1 A short textual comment about the
service objective.

value String 0..1 Term value that should not be
violated based on calculation formula

unit String 0..1 The unit of the value property

conditionStatement Enumeration 0..1 - greater
- less
- greaterOrEqual
- lessOrEqual
- equal

violationTriggerRules Array of
ViolationTriggerRule

0..n The violation trigger rules

metrics Array of Metric 0..n The definition of how to measure the
SLO or SQO

remedy Remedy 0..1 The compensation available to the
cloud service customer in the event
the cloud service provider fails to
comply a specified cloud service level
objective

The following Table 66 describes the properties of element type ViolationTriggerRule.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 25 of 41

www.decide-h2020.eu

Table 6. Properties of element type ViolationTriggerRule

Element Name ViolationTriggerRule

Description General information about a violation trigger rule

Property Type Cardinality Definition

violationInterval Number 0..1 Indicates the monitoring frequency for the
service objective

breachesCount Number 0..1 The count of how many breaches have
happened

The following Table 77 describes the properties of element type Remedy.

Table 7. Properties of element type Remedy

Element Name Remedy

Description General information about the compensation available to the cloud service
customer in the event the cloud service provider fails to meet a specified
cloud service objective

Property Type Cardinality Definition

type String 1..1 The type of remedy the cloud service
provider will be offering the cloud service
customer

value Number 1..1 The value of the type of remedy offered by
the cloud service provider

unit String 1..1 The unit for the value offered

validity String 1..1 The validity period for this remedy

The following Table 88 describes the properties (taken directly from ISO/IEC 19086-2 Metric Model
[1]) of element type Metric. The MCSLA Editor is responsible for eliciting this information from the
user.

Table 8. Properties of element type Metric

Element Name Metric

Description General information about the metric

Property Type Cardinality Definition

id String 1..1 A unique identifier for the metric within a
context

descriptor String 0..1 A short description of the metric

source String 0..1 The individual or organization who created
the metric

scale Enumeration 1..1 Classification of the type of measurement
result when using the metric. The value of
scale shall be “nominal, ordinal, interval, or

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 26 of 41

www.decide-h2020.eu

ratio”. SLOs shall use either the “interval” or
“ratio” scale. SQOs shall use the “nominal”
or “ordinal” scales.

note String 0..1 Additional information about the metric and
how to use it.

category String 0..1 A grouping of metrics with similar
expressions, rules, and parameters

expression Expression 1..1 The expression of the calculation of the
metric and supporting information. An SLO
metric shall have an expression while an SQO
may or may not have an expression (e.g.,
specified using natural language). It shall be
written using the ids to represent underlying
metrics, parameters, and rules.

parameters Array of
Parameter

0..n A parameter is used to define a constant (at
runtime) needed in the expression of a
metric. A parameter may be used by more
than one metric if it is defined using a unique
ID within the set of metrics it is used in.

rules Array of Rule 0..n A rule is used to constrain a metric and
indicate possible method(s) for
measurement.

underlyingMetrics Array of
Metric

0..n A metric element that is used within an
expression element to define a variable. The
expression shall use the underlying metric id
to reference the underlying metric within the
expression.

The following Table 99 describes the properties for the Expression element type.

Table 9. Properties of the Expression element type

Element Name Expression

Description The expression of the calculation of the metric and supporting information

Property Type Cardinality Definition

id String 0..1 A unique identifier (within the context of
the metric) for the expression

expression String 1..1 The expression statement written using
the ids to represent underlying metrics,
parameters, and rules.

expressionLanguage String 1..1 The language used to express the metric
(i.e. ISO80000 [9])

note String 0..1 Additional information about the
expression

unit String 0..1

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 27 of 41

www.decide-h2020.eu

required
when
scale is
ratio or
interval

Real scalar quantity, defined and adopted
by convention, with which any other
quantity of the same kind can be
compared to express the ratio of the two
quantities as a number.

subExpressions Array of
Expression

0..n Associated elements of type Expression
that is used within the expression to
define a variable. The expression shall use
the subExpression id to reference the
subExpression within the expression.

The following Table 1010 describes the properties of the Parameter element type.

Table 10. Properties of the Parameter element type

Element Name Parameter

Description A Parameter is used to define a constant (at runtime) needed in the
expression of a Metric. A Parameter may be used by more than one Metric
if it is defined using a unique ID within the set of metrics it is used in.

Property Type Cardinality Definition

id String 1..1 The unique identifier of the parameter

parameterStatement String 1..1 The statement or value of the parameter

unit String 1..1 The unit of the parameter

note String 0..1 Additional information about the
parameter

The following Table 11 describes the properties of the Rule element type.

Table 11. Properties of the Rule element type

Element Name Rule

Description A Rule is used to constrain a Metric and indicate possible method(s) for
measurement. For instance, an AvailabilityDuringBusinessHour Metric could
be defined with a scope that constrains some piece of a generic Availability
Metric element that limits the measurement period to defined business hours.
A Rule describes constraints on the metric expression. A constraint can be
expressed in many different formats (e.g. plain English, ISO 80000 [9], SBVR
[12])

Property Type Cardinality Definition

id String 1..1 The unique identifier for the rule

ruleStatement String 1..1 A constraint on the metric

ruleLanguage String 1..1 The language used to express the rule in
the ruleStatement property

note String 0..1 Additional information about the rule

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 28 of 41

www.decide-h2020.eu

4 Delivery and usage

All parts that are necessary to build and run the MCSLA Editor are available either in a zip file or can
be cloned from their git repositories:

mcsla-ui (MCSLA Frontend)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
DECIDE_Components/MCSLA/mcsla-ui (tag M24)

mcsla-service (MCSLA Service)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
DECIDE_Components/MCSLA/mcsla-service (tag M24)

mcsla-core (MCSLA Core Library)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
DECIDE_Components/MCSLA/mcsla-core (tag M24)

4.1 Configuration and Installation instructions

In order build, configure and run the MCSLA Editor, you need to do different steps for the three
different components that build up the editor. Whereas the frontend is written in JavaScript and runs
completely in the browser as a single page application, the backend is a standalone Java program
including a web server. In addition, the backend relies on the shared library for metric calculations.
Therefore, you should at first build and install the mcsla-core library, then build and run the mcsla-
service application, and finally build and install the mcsla-ui single page web application (SPA).

4.1.1 MCSLA Core (Shared Library)

Before the library can be build the dependency to the Application Controller needs to be installed in
an accessible maven repository, usually in the local repository of the developer. A detailed installation
guide is available in the deliverable D3.11 [13]

4.1.1.1 Build the library

The project is available via its git repository. If you have access, do the following steps:

$ git clone https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

$ cd mcsla-core

The project uses Maven as build tool. To build use the following command:

$ mvn clean package

After the build succeeded the package jar and a packaged fat jar can be find in the target directory.

4.1.1.2 Install the library

For non-Maven based projects you can take the build jar file located in the target directory after
executing the build command and put it in the classpath of your application. There is also a fat jar
provided containing all dependencies if required.

For Maven based projects you need to install it in a maven repository which your application can
access. E.g. to put it in your local maven repository, the user can simply call

$ mvn install

Finally, add the dependency to the applications pom.xml file. The correct version needs to be set:

<dependency>

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 29 of 41

www.decide-h2020.eu

 <groupId>eu.DECIDEh2020</groupId>

 <artifactId>mcsla-core</artifactId>

 <version>0.0.1-SNAPSHOT</version>

</dependency>

For further usage details and interface description see chapter 4.2.2

4.1.2 MCSLA Service (Backend)

The MCSLA Service is implemented based on Vert.x [14], a tool-kit for building reactive application for
the Java virtual machine.

4.1.2.1 Build the service

The project is available via its git repository. If you have access do the following steps:

$ git clone https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

$ cd mcsla-service

The project uses Maven as build tool. To build use the following command:

$ mvn clean package

You will find the built artefacts in the target directory.

4.1.2.2 Service configuration

The following environment variables are read:

• DECIDE_ACSMI_DISCOVERY_SERVICE_URI (mandatory) - The address of the ACSmI discovery
service

• DECIDE_REPOS_BASE_DIR (optional) - The path to the base for cloning remote repositories

4.1.2.3 Run the service

No installation required. To run the service, execute the following command:

$ java -jar target/mcsla-service

4.1.2.4 Docker

The MCSLA Service can be run also in a docker container [15]. A Dockerfile is provided in order to build
a docker image. To build and run the docker image execute the following commands from within the
project folder:

$ docker build -t decide/mcsla-service

$ docker run -it -p 8080:8080 decide/mcsla-service

4.1.3 MCSLA UI (Frontend)

The MCSLA Editor user interface is implemented as single page application using the React JavaScript
framework [16] initially developed by Facebook.

4.1.3.1 MCSLA UI configuration

The project is available via its git repository. If you have access do the following steps:

$ git clone https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

$ cd mcsla-ui

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 30 of 41

www.decide-h2020.eu

Before the frontend can use the REST web services of the MCSLA Service backend you have to first
configure the application. It needs to be done before the application is actually build. Edit the file
mcsla-ui/public/app-conf.json and put there the correct URL to the MCSLA Service API endpoint.

"serviceUri": "http://localhost:8080"

4.1.3.2 Build the UI

The project uses npm, the package manager from node.js, for building. The easiest way is to install
node.js [17]. npm is an integrated part of the installation. After npm is installed simply call

$ npm install

$ npm run build

Based on the package.json file, npm install will resolve all the required dependencies that the
application needs, in order to build the mcsla-ui application. After npm run build the “compiled”
application can be find inside the “build” directory.

4.1.3.3 Install and run

In order to run the frontend, it needs to be served from an http endpoint. Any http server can do, or
alternatively the serve package can be used after installed via npm:

$ npm install -g serve

Just call serve -s build to run an http endpoint and to serve the single page application. Enter

localhost:5000 in a browser and the following web app should be seen:

Figure 10. The initial MCSLA Editor page

To integrate the frontend into another web pages, e.g. in an HTTP iframe tag, there is a reduced version
without the title bar and without the left-hand navigation menu. It can be requested via the URL
http://localhost:5000/iframe.

For further usage details see chapter 4.2.2

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 31 of 41

www.decide-h2020.eu

4.1.3.4 Docker

To build a docker image [15] a Dockerfile is provided. To build and run the image the following
commands needs to be executed from inside the project folder:

$ docker build -t decide/mcsla-ui .

$ docker run -i -p 8080:8080 -e "DECIDE_MCSLA_SERVICE_URI=<your_mcsla_service_uri>" decide/mcsla-ui

4.2 User Manual

4.2.1 MCSLA Core Library usage

The MCSLA Core library encapsulates the model and calculation of metrics. Additionally, it defines and
implements predefined expressions for convenient usage of specific metrics especially in the context
of the DECIDE project.

4.2.1.1 Getting started

This is a small example how to create a metrics context and evaluate a cloud service objective:

// create context

MetricsContext context = MetricsContext.create(appDescription);

// get sla service objective metrics for a apecific cloud service

Map<String, ServiceObjectiveMetrics> metrics = context.getCsMetrics(csId);

// get the service objective metrics for a specific term name, e.g. "Availability"

ServiceObjeciveMetrics availabilityMetrics = metrics.get("Availability");

// now evaluate against a concrete monitoring result

EvaluationResult<Double> evaluationResult = availabilityMetrics.evaluate(monitoringResult);

if (!evaluationResult.isError()) {

 log.info("condition met: {}, result: {}", evaluationResult.isConditionMet(),

evaluationResult.getMeasurementResultValue());

} else {

 log.error(evaluationResult.getErrorMessage());

}

Further examples can be found in the test classes located in the src/test/java directory.

4.2.1.2 The Interface

In general, there are three main classes:

• MetricsContext

• ServiceObjectiveMetrics

• EvaluationResult<T>

MetricsContext

This class provides static methods for creating context objects. Created context can be used to get
service objective metrics of each SLA as a map. Furthermore, it contains a memory for cloud service
evaluation results, so specific aggregation expressions can be implicitly applied. And finally, it allows
the aggregation of service objectives or raw values.

Aggregation

The easiest way to use the MetricsContext is to aggregate some raw values:

List<Double> values = Arrays.asList(99.9, 99.8, 99.95);

Double value = MetricsContext.aggregate(values, Predefined.AVAILABILITY_AGGREGATION_SUMTYPE);

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 32 of 41

www.decide-h2020.eu

See Predefined Aggregation Expressions below for available aggregation expressions.

To start working with the library in the context of an application description you need to create a
MetricsContext object:

AppDescription appDescription = ...

MetricsContext context = MetricsContext.create(appDescription);

Now all agreement values of all cloud services for a specific term name can be aggregated:

Double value = MetricsContext.aggregate(Predefined.AVAILABILITY_AGGREGATION_SUMTYPE, "Availability");

Note, the return type depends on the predefined aggregation expression to be used.

Evaluation

The MetricsContext object has two methods for retrieving a ServiceObjectiveMetrics object which is
required for evaluation:

Map<String, ServiceObjectiveMetrics> appMetrics = context.getAppMetrics();

Map<String, ServiceObjectiveMetrics> cloudserviceMetrics = context.getCsMetrics(csId);

The return value is a map of term names and corresponding metrics of either a specific cloud service
or the application.

Now you can get the ServiceObjectiveMetrics object for a specific term name:

ServiceObjectiveMetrics objectiveMetrics = appMetrics.get("Availability");

ServiceObjectiveMetrics

You need objects s of this class to evaluate the metrics. The class has the following evaluation
functions:

• evaluate()

• evaluate(double[] measuredValues)

• evaluate(int[] measuredValues)

• evaluate(List\<Integer\> measuredValues)

• evaluate(Map\<String, List\<Long\>\> measuredValues)

• evaluate(double measuredValue)

They all return an EvaluationResult<T> object.

The first method without passing any monitoring results utilizes the memory function of the metrics
context. It therefore requires that each monitoring result to be aggregate must be evaluated
beforehand.

This makes sense where you have to evaluate first each cloud service metrics and then the aggregated
application metric:

Map<String, ServiceObjectiveMetrics> cloudserviceOneMetrics = context.getCsMetrics("<csId>");

ServiceObjectiveMetrics oneMetrics = cloudserviceOneMetrics.get("Availability");

EvaluationResult<Double> resultOne = OneMetrics.evaluate(99.9);

...

Map<String, ServiceObjectiveMetrics> cloudserviceTwoMetrics = context.getCsMetrics("1");

ServiceObjectiveMetrics twoMetrics = cloudserviceTwoMetrics.get("Availability");

EvaluationResult<Double> resultTwo = twoMetrics.evaluate(99.9);

...

Map<String, ServiceObjectiveMetrics> appMetrics = context.getAppMetrics();

ServiceObjectiveMetrics availabilityMetrics = appMetrics.get("Availability");

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 33 of 41

www.decide-h2020.eu

EvaluationResult<Double> resultApp = availabilityMetrics.evaluate();

EvaluationResult<T>

The first thing you should do is to check if the evaluation was successful:

EvaluationResult<Doube> result = ...

if (result.isError()) {

 log.error(result.getErrorMesssge());

} else {

 ...

}

A successful evaluation result contains the following information:

• The evaluation date and time

• The underlying term name

• The measurement result value

• The used condition statement

• And finally, if the condition is met (see Statement)

EvaluationResult<T> result = ...

Date time = result.getMeasurementTime();

String termName = result.getTermName();

T measurementValue = result.getMeasurementResultValue();

Statement conditionStatement ? result.getConditionStatement();

assert result.isConditionMet() : "Condition is not met.";

Predefined Aggregation Expressions

The class Predefined defines the following expressions that can be referenced by an enumeration
value.

Table 12. Enumeration values for predefined expressions

Expression

EMPTY The empty
aggregation
returns
always null

AVAILABILITY_UPTIME_BC Evaluation
of
downtimes
in seconds
to a
percentage
uptime
during a
billing cycle

AVAILABILITY_MTBFMTTR Evaluation
based on
meantime
between
failure and
meantime
between
recovery

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 34 of 41

www.decide-h2020.eu

AVAILABILITY_AGGREGATION_SUMTYPE An
aggregation
that
summarizes
percentage
values

AGGREGATION_MINTYPE Returns the
min value

AGGREGATION_MAXTYPE Returns the
max value

AGGREGATION_SUMTYPE Returns the
sum up of
values

Condition Statements

Table 13 shows the possible condition statement values which are used to compare the agreed service
objective value and the actual measured and calculated monitoring result.

Table 13. Enumeration values for condition statements

Expression

greater If the
monitored
value is
greater,
then the
condition
is
complied

less If the
monitored
value is
less, then
the
condition
is
complied.

greaterOrEqual If the
monitored
value is
greater or
equal,
then the
condition
is
complied

lessOrEqual If the
monitored
value is
less or
equal,

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 35 of 41

www.decide-h2020.eu

then the
condition
is
complied

equal If the
monitored
value is
equal,
then the
condition
is
complied

4.2.2 MCSLA UI

When the frontend is called without parameterizing the DECIDE project that should be used, the
application will display the page as shown in Figure 1010. To specify the DECIDE project to use, the
corresponding git repository needs to be provided. Open the git repository dialog by clicking on the git
logo button on the upper right. The dialog opens from the right as shown in Figure 1111.

Figure 11. Git repository Dialog

It asks for the usual values like the repository URL and some access information. For authentication
there are two possibilities. Either provide an access token which can usually be defined via the git
repository provider, or username and password credentials.

For bookmarking a shortcut way is possible in providing this information via query parameters of the
URL:

Table 14. Query parameters for the frontend

Query
Parameter

Description

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 36 of 41

www.decide-h2020.eu

uri The
repository
URL

token The access
token

username The
credentials
username

password The
credentials
password

Here is an example:

?uri=https://gitlab.com/MyGroup/myproject.git&token=pvQekECBfxfn1hgSC2Dx

After the frontend is configured to use a specific DECIDE project is displays some general information
about the application.

Figure 12. General information page

In the content area the title and some general information is displayed, the title of the DECIDE project
currently selected, a list of NFRs defined in the project and a list of microservices. The left-handed
navigation menu shows the following options:

The general information about the application derived from the app description.

 The complete application description displayed in raw JSON format with some syntax
highlighting (Figure 1313).

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 37 of 41

www.decide-h2020.eu

Figure 13. The JSON view page

 The actual SLA editor

Figure 1414 shows the actual MCSLA Editor page where the user can edit the SLA for the end-customer
(MCSLA) and view the contracted SLAs for the cloud services of the current deployment scenario. These
parts are separated in the two sections Application Multi-Cloud SLA and Cloud Services SLAs

Figure 14. The SLA editor page

On top of the first section the user can edit and change general information of the SLA for the end
customer, like validity period, a description and a list of covered services this SLA is defined for (Figure
1414). Below this general information is a list of Service Objectives in a folded list format.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 38 of 41

www.decide-h2020.eu

4.2.2.1 Add Service Objectives

In the bottom right corner there is always a button that allows the user to add Service Objectives that
are currently not in the list. These are:

Cost

Location

Scalability

Performance

Availability

Add new Service Objective

4.2.2.2 Edit Service Objectives

The Service Objective must be expanded for editing purpose via the chevron on the right side of the
list entry. Figure 1515 shows an expanded Service Objective for editing.

Figure 15. Expanded Service Objective

The editing features in this release are still very limited and will be completed in the next release. E.g.
there is currently no way to define metrics and all included concepts like expressions, parameters,
rules etc.

4.2.2.3 Deleting Service Objectives

In the right bottom corner of the expanded Service Objective is the trash icon for deleting the Service
Objective.

4.2.2.4 Commit or reset the SLA

After editing the MCSLA’s general information and the list of service objectives they need to be
persisted and synchronized with any remote repositories. Press the “Commit” button located on the
bottom of the Application Multi-Cloud SLA section. To revert any changes after the last commit and
switch back to the original state press the “Reset” button nearby (see Figure 1414).

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 39 of 41

www.decide-h2020.eu

4.2.2.5 Cloud Services SLAs

The SLAs from the section Cloud Services SLAs are read only and visualized for informative reasons.
They are separated by each cloud service. Each cloud service paragraph contains a folded list of Service
Objectives. More details can be viewed when expanded via the chevron on the right side.

4.3 Licensing information

The source code is licensed under the Eclipse Public License version 2.0.

See https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

4.4 Download

The complete source code can be downloaded as a zip file from https://www.decide-
h2020.eu/sites/decide.drupal.pulsartecnalia.com/files/documents/D3.14%20MCSLA-Components-
Source-Code.zip or https://www.decide-h2020.eu/content/deliverables and looking for the link ‘Code’
by the title ‘D3.14 Intermediate multi-cloud native application composite CSLA definition’. In addition,
the source projects can be cloned directly from the repositories. The three repositories are:

mcsla-ui (MCSLA Frontend)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

DECIDE_Components/MCSLA/mcsla-ui (tag M24)

mcsla-service (MCSLA Service)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

DECIDE_Components/MCSLA/mcsla-service (tag M24)

mcsla-core (MCSLA Core Library)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

DECIDE_Components/MCSLA/mcsla-core (tag M24)

And if not already made available through the other DECIDE tools, the application controller library is
required as well (see deliverable [13]):

app-controller (Application Controller Library)
 https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/AppController

http://www.decide-h2020.eu/
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html
https://www.decide-h2020.eu/sites/decide.drupal.pulsartecnalia.com/files/documents/D3.14%20MCSLA-Components-Source-Code.zip
https://www.decide-h2020.eu/sites/decide.drupal.pulsartecnalia.com/files/documents/D3.14%20MCSLA-Components-Source-Code.zip
https://www.decide-h2020.eu/sites/decide.drupal.pulsartecnalia.com/files/documents/D3.14%20MCSLA-Components-Source-Code.zip
https://www.decide-h2020.eu/content/deliverables
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.gitDECIDE_Components/MCSLA/mcsla-core%20(tag%20M24)
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.gitDECIDE_Components/MCSLA/mcsla-core%20(tag%20M24)
https://git.code.tecnalia.com/decide/AppController.git

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 40 of 41

www.decide-h2020.eu

5 Conclusions

This document presented the MCSLA task and the outcome of several discussions and research. The
first outcome has been presented in Section 2 of the document. The main points relevant for DEDICE
MCSLA definition are, among others:

• A MCSLA involves different SLOs and SQOs that can be declared as soft or hard and that
maintain an unchangeable external and changeable internal structure. The former must be
respected during a re-adaption and re-deployment of the application.

• In multi-cloud deployment scenarios SLAs must be aggregated, removing the complexity of
managing a multitude of SLAs from different CSPs

• Aggregation patterns are required.

A selection of aggregation patterns has been presented along with the proposition of a custom
aggregation pattern that fulfils our needs in terms of aggregating the availability of an application
dispersed across several CSPs or cloud services of different CSPs. An important aspect of this pattern
is that it considers that the dispersed microservice will most probably not fail simultaneously, resulting
in a lower availability value than that of an individual microservice.

Furthermore, the functional and technical description of the prototype is detailed. The prototype
consists of two main blocks, namely, the frontend and the backend. These components communicate
with one another using a restful interface and have been designed to be easily integrated into the
DevOps Framework.

The Data Model for the MCSLA has also been presented, it is based on the ISO/IEC 19086 [4, 1, 6, 7]
and includes a metric definition for each SLO in order to enable monitoring.

Finally, all information related to building, installing and using the prototype has been described in
section 4 of this document.

5.1 Future work

There is an important part of implementation work that will be included in the next and last iteration
of the prototype. The following is an excerpt of the open issues:

• Improvements to the UI

• Providing the MCSLA in a human readable form.

• Investigation of more aggregation patters for other NFRs, such as scalability.

Furthermore, regarding the conceptual work for the MCSLA task, the following aspects need to be
investigated in the future:

• Hierarchical structures of SLAs due to sub-contracting and how that affects our
implementation.

• Consideration regarding developing an implementation of the ISO/IEC 19086 separate from
the tools, as a library to be integrated in different projects. A first step is already done in
separating the expression calculation inside the MCSLA Core Library.

http://www.decide-h2020.eu/

D3.14 – Intermediate multi-cloud native
application composite CSLA definition Version 1.0 – Final. Date: 23.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 41 of 41

www.decide-h2020.eu

6 References

[1] International Standards Organisation, “ISO/IEC 19086-2:Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 2: Metric model,” 2017.

[2] I. Ul Haq and E. Schikuta, “Aggregation Patterns of Service Level Agreements,” FIT '10 8th
International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 2010.

[3] DECIDE, “Deliverable 3.13 - Initial multi-cloud native application composite CSLA definition”.

[4] International Standards Organisation, “ISO/IEC 19086-1: Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 1: Overview and Concepts,” 2016.

[5] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S.
Tuecke and M. Xu, “Web Services Agreement Specification (WS-Agreement),” Open Grid Forum.

[6] International Standards Organisation, “ISO/IEC 19086-3: Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 3: Core conformance
requirements,” 2017.

[7] International Standards Organisation, “ISO/IEC 19086-4: Information technology -- Cloud
computing -- Service level agreement (SLA) framework -- Part 4: Security and privacy,” 2017.

[8] DECIDE, “Deliverable 2.2 - Detailed requirements specification V2,” 2018.

[9] International Standards Organisation, “Standards catalogue - ISO/TC2 - Quantities and units,”
[Online]. Available: https://www.iso.org/committee/46202/x/catalogue/. [Accessed 26 11
2017].

[10] “The OpenAPI Specification,” [Online]. Available: https://github.com/OAI/OpenAPI-
Specification. [Accessed 2018].

[11] “ReDoc - OpenAPI/Swagger-generated API Reference Documentation,” [Online]. Available:
https://github.com/Rebilly/ReDoc. [Accessed 2018].

[12] OMG, “About the Semantics Of Business Vocabulary And Rules Specification Version 1.0,”
[Online]. Available: https://www.omg.org/spec/SBVR/1.0/About-SBVR/. [Accessed 2018].

[13] DECIDE, “Deliverable 3.11 - Intermediate multicloud native application controller,” 2018.

[14] “Eclipse Vert.x,” [Online]. Available: https://vertx.io/. [Accessed 2018].

[15] “Docker - Enterprise Container Platform,” [Online]. Available: https://www.docker.com/.
[Accessed 2018].

[16] “React - A JavaScript library for building user interfaces,” [Online]. Available: https://reactjs.org/.
[Accessed 2018].

[17] “Node.js,” [Online]. Available: https://nodejs.org/en/. [Accessed 2018].

http://www.decide-h2020.eu/

