
D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 1 of 20

www.decide-h2020.eu

Deliverable D3.11

Intermediate multi-cloud native application controller

Editor(s): Anne Barsuhn (Fraunhofer)
Simon Dutkowski (Fraunhofer)

Responsible Partner: Fraunhofer

Status-Version: Final - v1.0

Date: 29/11/2018

Distribution level (CO, PU): CO

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 2 of 20

www.decide-h2020.eu

Project Number: GA 731533

Project Title: DECIDE

Title of Deliverable:
Intermediate multi-cloud native application
controller

Due Date of Delivery to the EC: 30/11/2018

Workpackage responsible for
the Deliverable:

WP3 – Continuous Architecting

Editor(s): Fraunhofer

Contributor(s):

Leo Li (Fraunhofer)
Lena Farid (Fraunhofer)
Anne Barsuhn (Fraunhofer)
Simon Dutkowski (Fraunhofer)

Reviewer(s): Lorenzo Blasi (HPE)

Approved by: All Partners

Recommended/mandatory
readers:

WP5, WP4, WP3, WP2

Abstract: This software deliverable comprises the initial
multi-cloud native application controller This initial
version will concentrate on a specific programming
language, cloud technology and standard.

Keyword List: Application Controller, Deployment History,
OPTIMUS, Deployment Topology

Licensing information: The software documented in this deliverable is
licensed under the GNU Affero General Public
License Version 3

The document itself is delivered as a description for
the European Commission about the released
software, so it is not public.

Disclaimer This deliverable reflects only the author’s views and
views and the Commission is not responsible for any use
that may be made of the information contained therein

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 3 of 20

www.decide-h2020.eu

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 19/11/2018 First draft version Anne Barsuhn (Fraunhofer)

v0.2 20/11/2018 Second draft version Simon Dutkowski (Fraunhofer)

v0.3 22/11/2018 Finalized for internal review Simon Dutkowski (Fraunhofer)

V0.4 29/11/2018 Final editing before release Simon Dutkowski (Fraunhofer)

V1.0 29/11/2018 Ready for submission Leire Orue-Echevarria (TECNALIA)

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 4 of 20

www.decide-h2020.eu

Table of Contents

Document Description .. 3

Table of Contents .. 4

List of Figures ... 5

List of Tables .. 5

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 Implementation ... 9

2.1 Functional description ... 9

2.1.1 Fitting into overall DECIDE Architecture ... 10

2.2 Technical description ... 10

2.2.1 Data Model of the Deployment History .. 12

2.2.2 Components description ... 12

3 Delivery and usage .. 14

3.1 Package information ... 14

3.2 Installation instructions ... 14

3.3 User Manual .. 15

3.3.1 Opening or Creating a DECIDE Application Project ... 15

3.3.2 Access to the Application Description ... 16

3.3.3 Validation Exception Handling .. 16

3.3.4 Access to the Deployment History .. 17

3.4 Licensing information .. 17

3.5 Download .. 17

4 Conclusions .. 18

5 References ... 20

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 5 of 20

www.decide-h2020.eu

List of Figures

FIGURE 2. USE CASES DIAGRAM ... 11
FIGURE 1. APPLICATION CONTROLLER COMPONENT DIAGRAM .. 13

List of Tables

TABLE 1. RELATIONSHIP BETWEEN APPLICATION CONTROLLER FUNCTIONALITIES AND REQUIREMENTS 9
TABLE 2. PROPERTIES OF ELEMENT TYPE HISTORYENTRY .. 12
TABLE 3. STATIC OPEN METHODS OF APPMANAGER .. 15
TABLE 4. APPLICATION CONTROLLER TASKS ... 18

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 6 of 20

www.decide-h2020.eu

Terms and abbreviations

ADAPT Application Deployment and Adaptation

API Application Programming interface

CIMI Cloud Infrastructure Management Interface

CO Confidential

CSP Cloud Service Provider

DECIDE DEvOps for trusted, portable and interoperable multi-Cloud applications

towards the Digital singlE market

DevOps Development and Operations

DoA Description of Actions

EC European Commission

GA Grant Agreement

GNU GNU is Not Unix

ID Identifier

ISO International Organization for Standardization

JSON JavaScript Object Notation

OASIS Organization for the Advancement of Structured Information Standards

POJO Plain Old Java Objects

PU Public

SCM Source Code Management

SLA Service Level Agreement

TOSCA Topology and Orchestration Specification for Cloud Applications

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 7 of 20

www.decide-h2020.eu

Executive Summary

The document at hand accompanies the deliverable “D3.11: Intermediate multi-cloud native
application controller” (software demonstrator) and documents it from a functional and technical
perspective. This deliverable is the second of three. This document is the revision of the initial
document with the same title [1] and contains content that is reused.

The notion of said documentation is to provide developers with the information regarding the aim of
the software, i.e. the Application Controller, how it is implemented, how it fits into the DECIDE project
as a whole and how to use it.

The implemented Java library from the first prototype concentrated on the definitions of the main
descriptor, the Application Description and its storage in a git repository. A JSON schema was specified
for allowing validation of Application Description instances to ensure proper information exchange
between the different DECIDE tools. A first draft version of the Deployment History was also
implemented, but not integrated in the usage scenarios of Year 1. Certain aspects have been moved
to WP4 (CSP script generation and topology translation) as described in D4.1 [2].

This prototype of Year 2 contains a revised Application Description schema and updated data binding
to better support the different tools and also to cover the new usage scenarios like the semi-automatic
re-deployment. Especially for the re-deployment scenario, the main innovation was a revised structure
of the Deployment History, but it is expected not to be the final version and needs further reflection.
Furthermore, the Year 2 prototype was improved regarding the general git handling, the API design
and the validation analysis. With this approach, the DevOps philosophy followed in the DECIDE project
is further pursued. Furthermore, OPTIMUS or any interested DECIDE tool may re-use this library in
order to access information regarding the application or the current and historical deployment
topology for a given application.

In Year 3 further efforts are necessary to finalize the Deployment History definition and to improve the
management of it in all usage scenarios. Second, the general git implementation needs to be improved
to proper handling any conflicts between local and remote revisions of descriptors. It is envisioned
that the Application Controller will be extended in the future to include more functionality, e.g.
allowing the management of logical groups of microservices and any kind of relations between NFRs,
microservices, patterns or other elements of the Application Description.

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 8 of 20

www.decide-h2020.eu

1 Introduction

The functionality of the Application Controller as understood by the DECIDE consortium should for one
reflect the status and state of the application and connect the former with the DECIDE tools in the
sense of enabling each tool to understand its corresponding fulfilments.

The Application Controller is implemented as a globally re-useable library in the DECIDE framework.
The main purpose is to offer global functions and processes to other components. The Application
Controller is developed on top of a main git repository, which contains necessary information about
the developed services.

In Year 1 of the project, the Application Controller has attained the role of assisting in managing the
intelligence regarding the currently used deployment configuration and the historical ones. It keeps
records whether a deployment configuration was successful and if any SLA violations had occurred in
the applications operation time. With this information, OPTIMUS is able to suggest new and adequate
deployment configurations.

In Year 2 of the project the Application Controller reflects a revised Application Description focusing
more on the deployment and runtime information. Because the re-deployment scenarios are a key
part of the M24 milestone, further efforts are made to improve the deployment history definition in
order to better reflect the requirements from OPTIMUS side. Furthermore, the API is enhanced with
additional functionality for a better flexibility regarding the git [3] handling and possible project
structure requirements.

1.1 About this deliverable

This document explains the implemented functions and processes of the current Application Controller
library. Furthermore, a brief introduction is given to setup and integrate in other components.

1.2 Document structure

Section 2 of this deliverable describes implementation details and Section 3 covers how to pull, build
and use the library.

In section 4, the conclusion is presented along with deviations from the DoA [4] and an outline for
future work.

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 9 of 20

www.decide-h2020.eu

2 Implementation

2.1 Functional description

Beside the general managing of the Application Description model and the encapsulation of the git [3]
repository handling, the Application Controller component assists in managing the intelligence
regarding the currently used deployment configuration and historical ones. It keeps records whether
a deployment configuration was successful and if any SLA violations had occurred in the applications
operation time. With this information, OPTIMUS [5] is able to suggest new and adequate deployment
configurations and not reuse a previous deployment configuration that deemed unsuccessful or faulty
in terms of security, performance or legal awareness.

The following functionalities have been implemented as part of the Application Controller:

F1. Holding the technical definition of the Application Description and provides controlled access
for managing and validation based on a JSON schema describing the structure of the
description.

F2. Storing Application Descriptions in a JSON based file in an accessible git repository.
F3. Holding the intelligence of the different deployment configurations that the multi-cloud

application has had in its operation time.
F4. Storing these deployment configurations in a JSON based history file, defined by a JSON

schema, in the same git repository where the Application Description resides.
F5. Provide OPTIMUS [5] with the operations required in order to read and write the chosen

deployment configuration. In the case of reading, avoiding those configurations that resulted
problematic in terms of security, performance or legal awareness can be achieved.

F6. Provide the DECIDE DevOps Framework [6] with the necessary operations to read from the
historical configuration.

F7. The deployment history will include meta-data regarding the deployment configuration such
as time and date of deployment, the current status, information on the microservice, CSP data
and information regarding any SLA breaches that have taken place.

F8. The deployment history file is stored in an accessible location (git repository) and the
mechanisms for accessing, updating and deleting the file and its entries are available.

The following table details the relationship between the Application Controller requirements indicated
in the deliverable for requirements [7] and the implemented functionalities, with a description of the
coverage for each functionality.

Table 1. Relationship between Application Controller functionalities and requirements

Functionality Req. ID Coverage
F1, F2 WP3-CONTR-REQ11, WP3-

CONTR-REQ12

A library is implemented to cover this aspect and
the data format (JSON) and structure has been
provided to hold all relevant and needed
information.

F3, F4, F5 WP3-CONTR-REQ2, WP3-
CONTR-REQ9

An additional JSON schema for the Deployment
History is defined and management for a
separate file in the same repository is
implemented.

F6 WP3-CONTR-REQ1 The multi-cloud native application controller is
implemented as a Java Library and can be used by
any Java source Code very easily.

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 10 of 20

www.decide-h2020.eu

Functionality Req. ID Coverage

F7, F8 WP3-CONTR-REQ12 The library provides methods in order to access a
git repository with the supplied credentials, push,
and pull relevant information into a JSON file
dedicated for the historical deployment
configuration.

2.1.1 Fitting into overall DECIDE Architecture

The Application Controller library acts as a facilitator for OPTIMUS [5] in terms of creating and
accessing historical information regarding the applications deployment topologies. The history file is
located in a git repository adjacent to the Application Description. Both, the repository and the
Application Description are initially created during the Application development phase.

The Application Description holds all necessary information for describing and classifying the
application. It also holds the state of the application. The deployment history file complements the
Application Description by providing information regarding the historical deployment configurations
in a simple structure that is easily understood and parsed by the DECIDE tools (OPTIMUS more
specifically).

The Application Controller provides a common way to create, update and validate all project related
information. The Application Controller also maintains a technical definition of all descriptors that
defines a DECIDE application project, currently the Application Description and the Deployment
History, allowing to validate the correctness and integrity of the project descriptors.

2.2 Technical description

The two main aspects of the Application Controller are the maintaining of the two descriptors in a git
repository. Figure 11 depicts the high-level simplified use cases that the Application Controller covers.

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 11 of 20

www.decide-h2020.eu

Figure 1. Use Cases Diagram

Create Application Project

The Application Controller allows the creation of a new DECIDE application project. A DECIDE
application project represents an application development project within the context of the DECIDE
DevOps Framework. If necessary, a local git repository is created, or an existing local or remote
repository is reused. The two descriptors, the Application Description and the Deployment History are
created and initialized.

Read Application Description

The Application Controller opens existing DECIDE projects for reading and writing. The Application
Description will be validated against the defined JSON schema to ensure syntactical correctness. The
Application Controller provides a POJO1 based model of the Application Description for easy finding
and processing of the contained information.

Update Application Description

The Model can be easily manipulated and written back to the descriptor file in the project folder. In
strict mode each modification to the Application Description will be validated before applied to ensure
syntactical correctness against the defined schema. If required, a synchronization with the related
remote repository can be requested.

Read Deployment History

The Application Controller allows the retrieving of the deployment history from a DECIDE project. In
strict mode that includes also a validation against the defined JSON schema to ensure syntactical

1 POJO: Plain Old Java Object

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 12 of 20

www.decide-h2020.eu

correctness of the Deployment History. The Application Controller provides a POJO based model of the
Deployment History for easy finding and processing of the contained information.

Update Deployment History

The retrieved model of the Deployment History can be easily manipulated and written back to the
descriptor file in the project folder. In strict mode the updated Deployment History will be validated
to ensure syntactical correctness against the defined schema. If required a synchronization with the
related remote repository can be requested.

2.2.1 Data Model of the Deployment History

A complete data model description for the Application Description can be found in [8]. This chapter
focuses on the data model for the Deployment History. It is in general a list of deployment schemas
enriched with a date and corresponding Service Level Agreement (SLA) breaches. Table 22 lists all
properties of element type HistoryEntry. The Deployment History descriptor is simply an array of
HistoryEntry elements.

Table 2. Properties of element type HistoryEntry

Element Name HistoryEntry

Description The element that holds a deployment schema and related SLA breaches

Property Type Cardinality Definition

date String 1..1 The deployment date for the schema.

schema SchemaElement 1..1 The deployment schema exactly as
defined in [8] as part of the Application
Description

slaBreaches Array of Objects 0..n A list of SLA breaches that invalidates the
deployment schema and initiated a re-
deployment

2.2.2 Components description

Figure 22 shows the component diagram of the Application Controller. To give more inside of each
depicted component in the following each component is briefly described.

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 13 of 20

www.decide-h2020.eu

Figure 2. Application Controller Component Diagram

Application Manager

The Application Manager is the initial access point for working with the DECIDE project. It holds the
logic for automatic validation, synchronization between local and remote repositories and the
mapping between the JSON structure of the Application Description and the data binding to POJOs. It
is accompanied by two sub-components, an Application Description factory and an Application
Description Helper.

History Manager

The History Manager complements the Application Manager with the same functionalities related to
the Deployment History. Except the opening of DECIDE projects, it holds the logic for the data binding
between the JSON structure of the Deployment History and the corresponding POJOs. It is
accompanied by a sub-component History Factory helping creation and validation of the Deployment
History.

Persistence Layer

The Persistence Layer abstracts the git repository handling and encapsulates all low-level git [3]
operations. This theoretically allows the utilization of other source code management (SCM)
technologies, like Mercurial [9] or even Subversion [10].

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 14 of 20

www.decide-h2020.eu

3 Delivery and usage

3.1 Package information

The Application Controller is implemented as a shared library based on the Apache Maven build tool
[11]. Therefore, it follows the usual maven project structure. All dependencies are defined in the
pom.xml file.

 |--- src

 | |--- main

 | | |--- java

 | | | |--- … java packages

 | | |--- resources

 | | |--- application_description.schema.json

 | | |--- optimus_history.schema.json

 | |--- test

 | |--- java

 | | |--- … java test packages

 | |--- resources

 | |--- … test resources

 |---LICENSE.txt

 |---README.md

 |---pom.xml

The package also contains the JSON schema [12] files for the Application Description and the
Deployment History. They are located in the folder src/main/resources:

• application_description.schema.json – JSON schema of the application description structure

• optimus_history.schema.json – JSON schema of the deployment history structure

The project tree contains beside the sources the following relevant additional files:

• README.md – Short installation and usage instructions

• LICENSE.txt – License information

3.2 Installation instructions

The project is available via a git repository. If you have access, do the following steps:

$ https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.git

$ cd AppController

The project uses Maven as build tool [11]. After the successful build the jar and a fat jar can be find in
the target directory. To build use the following command:

$ mvn clean package

Use -DskipTests option if the test repository is not accessible for you. If you would like to do the tests,
edit the test class AppManagerTest and provide the necessary remote repository information.

For non-Maven based projects you can take the build jar file located in the target directory after
executing the build command and put it in the classpath of your application. There is also a fat jar
provided containing all dependencies if required.

For Maven based projects you need to install it in a Maven repository which your application can
access. E.g. to put it in your local maven repository, you can simply call

$ mvn install

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 15 of 20

www.decide-h2020.eu

Finally, your application pom.xml requires the following dependency:

<dependency>

 <groupId>eu.DECIDEh2020</groupId>

 <artifactId>app-controller</artifactId>

 <version>0.0.15</version>

</dependency>

3.3 User Manual

The User Manual describes the public API of the Application Controller. More examples are provided
in the test classes located in src/test. In general, the library provides its API through the following main
classes:

• AppManager
The initial entry point for working with a DECIDE project, including the git repository.

• AppDescriptionFactory
This class provides static methods for creating, loading, saving and validating app description
instances.

• AppDescriptionHelper
This class provides convenient methods to access internal information of the app description
by processing any conventions made by the project. E.g. retrieves groups and lists defined by
tags.

• HistoryManager
Entry point for working with the Deployment History. Before getting this manager an
AppManager must be initialized.

• HistoryFactory
Helper methods for creating correct history entries.

For convenience and for avoiding the developer to work with native JSON structures, which is error
prone when working on a complex structure like the Application Description, the Application Controller
provides a data binding to Plain Java Objects (POJO). These model classes are located in the java
package eu.DECIDEh2020.appManager.models

3.3.1 Opening or Creating a DECIDE Application Project

Before the Application Controller can be used, it initially needs to be pointed to a DECIDE application
project, currently represented through a git repository with at least Application Description file and
optionally a Deployment History file. The AppManager class offers a set of methods to open the project
(Table 33). If the local path does not contain a git repository it will be implicitly converted to a git
repository.

Table 3. Static open methods of AppManager

Class AppManager

Method Parameter Description

static open Path localPath Open a local directory as DECIDE project.
If it is not already a git repository it will
be initialized as git repository and all files
will be added.

String gitRef
String username
String password
Path localPath

Open a remote git repository as DECIDE
project with user credentials. If the local
path is not already a git repository, the
remote will be cloned. Otherwise the

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 16 of 20

www.decide-h2020.eu

local repository will be updated (pulled)
from the remote repository.

 String gitRef
String token
Path localPath

Open a remote git repository as DECIDE
project with a deployment token. If the
local path is not already a git repository,
the remote will be cloned. Otherwise the
local repository will be updated (pulled)
from the remote repository.

3.3.2 Access to the Application Description

The complete Application Description itself is hold by the model class AppDescription. A small example
on getting the AppDescription and saving it using the AppManager (exception handling omitted due to
better readability):

AppManager appManager = AppManager.open(gitRef, username, password, localPath);

// get the Appdescription

AppDescription appDescription = appManager.getAppDescription();

// do something with the AppDescription

// then save

appManager.writeAndSync(appDescription, "Added new Microservices");

// close the AppManager

appManager.close();

Since the AppManager also implements the Closeable interface you can also use the try-with-resources
statement to work on the AppDescription.

Path path = FileSystems.getDefault().getPath("path/to/git/dir");

try (AppManager appManager = AppManager.open("https://git.ref/", "username", "password", path)) {

 AppDescription appDescription = appManager.getAppDescription();

 //work on the AppDescription & save it with AppManager

 appManager.writeAndSync(appDescription, "Added NFRs");

} catch (AppManagerException | IOException e) {

 e.printStackTrace();

}

For further examples please take a look at the test cases in src/test/java.

3.3.3 Validation Exception Handling

A DECIDEValidationException is usually a wrapper for the underlying validation library validation
errors. The Application Controller utilizes the JSON Schema Validator from everit-org [13]. You can
easily access the original ValidationException if you need more details beyond the main message.

try {

 AppDescription appDescription = appManager.getAppDescription();

} catch (DECIDEValidationException e) {

 ValidationException original = (ValidationException)e.getCause();

 // get a list of all sub messages

 List<String> messages = original.getAllMessages();

 // get all sub exceptions. Each one is again a ValidationException

 List<ValidationException> original.getCausingExceptions();

 // getting a fancy pretty printed json structure containing all sub errors

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 17 of 20

www.decide-h2020.eu

 String json = original.getJSON().toString(4);

} catch (IOEXception e) {

 e.printStackTrace();

}

Please note that DECIDEValidationException is also a subclass of AppManagerException.

3.3.4 Access to the Deployment History

The Deployment History is represented as a list of HistoryEntry elements. A small example on getting
the List<HistoryEntry> and saving it using the HistoryManager (exception handling omitted due to
better readability):

// First open the DECIDE project

AppManager appManager = AppManager.open(gitRef, username, password, localPath);

// retrieve the history manager object

HistoryManager historyManager = appManager.getHistoryManager();

// get the history

List<HistoryEntry> history = historyManager.getHistory();

// do something with the history

// write back any changes

historyManager.writeAndCommit(history, "commit message");

For further examples please take a look at the test cases in src/test/java.

3.4 Licensing information

The source code is licensed under the GNU Affero General Public License Version 3. (See also the
LICENSE.txt inside the source package)

3.5 Download

The complete source code can be downloaded as a compressed archive file from

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/AppController (tag

M24)

http://www.decide-h2020.eu/
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/AppController

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 18 of 20

www.decide-h2020.eu

4 Conclusions

In conclusion, a small library was implemented to write and update a deployment history of all (micro)
services the DECIDE framework is deploying.

The history file created by the Application Controller library can be accessed programmatically via a git
repository in order for OPTIMUS to avoid suggesting deployment topologies that previously have had
SLA breaches by the Cloud Service Providers (CSP).

The library has been described from a functional and technical perspective in order for developers to
understand its role in the project and how to integrate it and use it. A simple jar file is to be added as
a library to projects or better defined as dependency if the project is Maven based.

It is important to note that the description of the Application Controller in the DoA [4] and its
envisioned functionality have been conceptualised and its solutions have been introduced in various
components and parts of the DECIDE Framework.

The DoA states “Once the DECIDE Optimus tool has suggested the most convenient deployment
configuration based on the requirements elicited by the user, it is time to select which deployment script
is the selected one. The DECIDE application controller has a double aim. Firstly, it will apply the
necessary annotations in the source code at component and micro-service level in order to be read by
the deployment engine as well as for the self-adaptive tools to be developed in T4.1 and will then create
apply the corresponding deployment scripts. Standards such as CIMI, ISO 19941, ISO 19944, OASIS
TOSCA, etc. have to be supported, depending on available interfaces at the target CSPs. Hence, a
specific interface will allow to plug-in adaptors to translate topology and configuration information
into the respective target formats. The second aim of this controller is to hold the intelligence of the
different deployment configurations that the multi-cloud application has had in its operation time.
Storing these deployment configurations will allow avoiding those configurations that resulted
problematic in terms of security, performance or legal awareness.” [2].

The following table summarises the T3.4 task’s output as described in the DoA and gives insight on
how they have been addressed at this stage of the project.

Table 4. Application Controller Tasks

Task Implementation Explanation

Apply necessary annotations
in source code

Not applicable This is dropped as it turns out it is not
needed due to the final approach followed
in DECIDE.

Create and apply the
corresponding deployment
scripts

Not applicable Script generation has been moved to
ADAPT. As explained in D4.1 [2], the
deployment configuration scripts are
dependent on the technology selected for
the ADAPT implementation.

Support of standards JSON and JSON
Schema

All information is stored and specified in
JSON and JSON schema format.

Plug-in Adapters to translate
topologies

Not applicable Script generation has been moved to
ADAPT. As explained in D4.1 [2], the
deployment configuration scripts are

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 19 of 20

www.decide-h2020.eu

Task Implementation Explanation

dependent on the technology selected for
the ADAPT implementation

Hold intelligence wrt. different
deployment configurations

Implemented as a
Java Library

Documented in this deliverable

http://www.decide-h2020.eu/

D3.11 – Intermediate multi-cloud native application controller Version 1.0 – Final. Date: 29.11.2018

© DECIDE Consortium Contract No. GA 731533 Page 20 of 20

www.decide-h2020.eu

5 References

[1] DECIDE, “Deliverable 3.10 - Initial multi-cloud native application controller,” 2018.

[2] DECIDE Consortium, “D4.1 Initial DECIDE ADAPT Architecture,” 2017.

[3] “git - distributed is the new centralized,” [Online]. Available: https://git-scm.com/. [Accessed
2018].

[4] DECIDE Consortium, "DECIDE Annex 1 - Description of Action," 2016.

[5] DECIDE, “Deliverable D3.8 Intermediate DECIDE OPTIMUS,” 2018.

[6] DECIDE, “Deliverable D2.6 - Initial DECIDE DevOps Framework Integration,” 2017.

[7] DECIDE, “Deliverable 2.2 - Detailed requirements specification V2,” 2018.

[8] DECIDE, “Deliverable 2.5 - DECIDE Detailed architecture,” 2018.

[9] “Mercurial SCM,” [Online]. Available: https://www.mercurial-scm.org/. [Accessed 2018].

[10] Apache, “Apache Subversion,” [Online]. Available: https://subversion.apache.org/. [Accessed
2018].

[11] A. S. Foundation, “Apache Maven project,” [Online]. Available: https://maven.apache.org/.
[Accessed 2018].

[12] “JSON Schema,” [Online]. Available: https://json-schema.org/. [Accessed 2018].

[13] everit-org, “JSON Schema Validator,” [Online]. Available: https://github.com/everit-org/json-
schema. [Accessed 2018].

http://www.decide-h2020.eu/

