[bookmark: _Hlk1642355]D2.8 – Final DECIDE DevOps Framework Integration	 Version 1.0 – Final. Date: 24.09.2019
[bookmark: _GoBack]

[image: T:\Proyectos\ABIERTOS\057869_DECIDE\Doc_Tecnica_Proyecto\WP1\Templates\Logos\logoDecide_300ppp.jpg]

Deliverable D2.8
Final DECIDE DevOps Framework Integration

	Editor(s):
	José Manuel López
Javier Gavilanes Ruano

	Responsible Partner:
	Experis IT

	Status-Version:
	Final – v1.0

	Date:
	24/09/2019

	Distribution level (CO, PU):
	PU

	Project Number:
	GA 726755

	Project Title:
	DECIDE

	Title of Deliverable:
	D2.8 Final DECIDE DevOps Framework Integration

	Due Date of Delivery to the EC:
	31/08/2019

	Workpackage responsible for the Deliverable:
	WP2 – DECIDE requirements and DECIDE solution integration

	Editor(s):
	Experis IT

	Contributor(s):
	Experis IT

	Reviewer(s):
	Kyriakos Stefanidis (FhG)

	Approved by:
	All Partners

	Recommended/mandatory readers:
	WP3, WP4, WP5, WP6

	Abstract:
	This deliverable will provide the final version of the integrated DECIDE DevOps Framework. The final version
will include corrections and feedback coming from the implementation of the use cases.

	Keyword List:
	DevOps framework, integration, multi-cloud, microservice.

	Licensing information:
	This component is offered under the MIT license.
The document itself is delivered as a description for the European Commission about the released software, so it is not public.

	Disclaimer
	This deliverable reflects only the author’s views and views and the Commission is not responsible for any use that may be made of the information contained therein

Document Description
Document Revision History
	Version
	Date
	Modifications Introduced

	
	
	Modification Reason
	Modified by

	V0.1
	15.08.2019
	First draft version
	Experis IT

	V0.2
	28.08.2019
	Added missing contributions
	Experis IT

	V0.3
	09.09.2019
	Internal review
	FhG

	V0.5
	10.09.2019
	Review comments addressed
	Experis IT

	V1.0
	24.09.2019
	Ready for submission
	TECNALIA

[bookmark: _Toc20212686]Table of Contents
Table of Contents	4
List of Figures	5
List of Tables	5
Terms and abbreviations	6
Executive Summary	7
1	Introduction	8
1.1	About this deliverable	8
1.2	Document structure	8
2	DECIDE Development and Integration	9
2.1	Staging integration environment:	10
2.2	Production integration environment	10
3	DECIDE Orchestration	19
4	DECIDE UI	21
5	Implementation	22
5.1	Functional description	22
5.1.1	Fitting into overall DECIDE Architecture	25
5.2	Technical description	25
5.2.1	Prototype architecture	26
5.2.2	Components description	27
5.2.2.1	State machine API	27
5.2.2.2	UI updates	31
6	Delivery and usage	33
6.1	Package information	33
6.1.1	DevOps Framework Client	33
6.1.2	DevOps Framework Server	36
6.2	Installation instructions	37
6.3	User Manual	38
6.4	Licensing information	39
6.5	Download	39
7	Conclusions	40
References	41
Annex A. DECIDE Components’ UI	42

[bookmark: _Toc20212687]List of Figures
Figure 1. Development process in DECIDE	9
Figure 2. DECIDE State machine diagram	19
Figure 3. DevOps framework’s UI. Final version	21
Figure 4. DevOps Framework within DECIDE	25
Figure 5. DevOps Framework prototype’s architecture diagram	26
Figure 6. DevOps Framework UI. Connection to state machine	32
Figure 7. DevOps Framework Client’s file structure	33
Figure 8. HTML code of ACSmI Contracting module	34
Figure 9. TS code of ACSmI Discovery module	34
Figure 10. TS code of ACSmI Billing module	34
Figure 11. Structure of the “components” module	35
Figure 12. Structure of the “models” module	35
Figure 13. Code snippet of the “models” module	36
Figure 14. Structure of the “services” module	36
Figure 15. DevOps Framework Server’s file structure	37
Figure 16. Services of the DevOps Framework’s Server	37
Figure 17. ARCHITECT’s UI	42
Figure 18. OPTIMUS’ UI	42
Figure 19. MCSLA’s UI	43
Figure 20. ACSmI Discovery’s UI	43
Figure 21. ACSmI Contracting’s UI	44
Figure 22. ADAPT DO’s UI (1)	44
Figure 23. ADAPT DO’s UI (2)	45
Figure 24. ACSmI Monitoring’s UI	45

[bookmark: _Toc20212688]List of Tables
Table 1. Relationship between states and enabled tools	20
Table 2. Requirements covered by the M33 prototype	22
Table 3. Endpoints of DECIDE components	38

[bookmark: _Toc347403746][bookmark: _Toc20212689]Terms and abbreviations
	ACSmI
	Advanced Cloud Service (meta-) Intermediator

	ADAPT DO
	ADAPT Deployment Orchestrator

	ADAPT MM
	ADAPT Monitoring Manager

	API
	Application Programming Interface

	EC
	European Commission

	GUI
	Graphical User Interface

	HTML
	Hypertext Mark-up Language

	HTTP
	Hypertext Transfer Protocol

	JSON
	JavaScript Object Notation

	KR
	Key Result

	MCSLA
	Multi-cloud Service Level Agreement

	MIT
	Massachusetts Institute of Technology

	MTBF
	Mean Time Between Failures

	MVC
	Model-view-controller

	NFP
	Non-functional Properties

	NFR
	Non-functional Requirement

	RAM
	Random Access Memory

	REST
	Representational State Transfer

	UI
	User Interface

	URL
	Uniform Resource Locator

	WP
	Work Package

[bookmark: _Toc235609311][bookmark: _Toc235611227][bookmark: _Ref248088163][bookmark: _Toc337747938][bookmark: _Toc20212690]
Executive Summary
This document contains the technical description of the DevOps Framework. The third release of this component offers new functionalities, as a state machine to control the DECIDE workflow and that was introduced in the previous version of this deliverable, and new changes in the UI.
The state machine has been updated to include redeployment workflows and to iron out some issues, and its effect is reflected in the DECIDE UI, to give the user and indication of whether or not the tools are enabled.
The deliverable also goes deeper into the configuration of the production environment, detailing each of the pipelines set up to deploy the DECIDE components.
Lastly, the technical implementation of this component, as well as delivery information and installation and usage instructions can be found at the end of the document.

[bookmark: _Toc337747939][bookmark: _Toc20212691]Introduction
[bookmark: _Toc347403749][bookmark: _Toc20212692][bookmark: _Toc223686013][bookmark: _Toc232271332][bookmark: _Toc337747940]About this deliverable
This deliverable explains the architecture, delivery and usage of the third and final DECIDE DevOps framework prototype. It details the newly implemented functionalities for the M33 prototype, such as the workflow orchestration through a state machine, and it includes a technical description of this component.
[bookmark: _Toc2187667][bookmark: _Toc347403750][bookmark: _Toc20212693]Document structure
The document is structured in six (6) main sections:
· Section 2 reviews the DECIDE integration environment.
· Section 3 details the new state machine component.
· Section 4 presents the changes to the DECIDE UI.
· Section 5 contains the technical description of the DevOps framework.
· Section 6 provides delivery and usage information.

[bookmark: _Toc20212694][bookmark: _Toc358299040][bookmark: _Toc463258797]DECIDE Development and Integration
This section presents the production environment set up for testing the stable versions of the DECIDE tools. As it was introduced in deliverable D2.7 Intermediate DECIDE DevOps Framework integration [1], the development process in DECIDE is configured as a three-stage process, as shown in the following figure:
[image:]
[bookmark: _Toc1569447][bookmark: _Toc20212718]Figure 1. Development process in DECIDE
According to this strategy, the tools are developed locally by partners during the development stage, tested for correctness and proper integration during the staging stage, and moved to the production stage only when the components are working as intended.
· During the development stage, the different tools are developed by the responsible partners, locally, and tested in isolation before moving to the staging stage.
· In the staging stage, all DECIDE KRs are deployed in a common environment, where integration tests can take place. This environment is meant to check the correct integration of the components, and said components are redeployed whenever the developer changes the code.
· Lastly, in the production stage, only stable versions of the tools are deployed, after making sure that they are working as intended. This environment is manually rebuilt every 15 days.
As it has been mentioned, the development is performed locally by the partners, but the staging and production stages are integration environments, set up in AIMES premises, to which all partners have access. These environments will be described in the following section.
Besides, as explained in deliverable D2.7 [1], two different branches were be created in Git:
· Master branch: this branch hosts the most recent version of the tools, where new functionalities are implemented. The code on the master branch is deployed in the staging environment whenever a new version is released.
· Release branch: this branch holds only stable versions of the tools. It is updated with a new version once it has been proved that said version is bug-free and working properly. The code on the release branch is deployed in the production environment every 15 days.
Furthermore, the different tool releases in the release branch are tagged to give the possibility of rolling back to a previous version, in case something goes wrong with the tool.

[bookmark: _Toc20212695]Staging integration environment:
The integration environment is located in an AIMES machine, to which a public IP has been assigned. This environment is meant to test recent changes to the tools and the integration of the different components. As such, whenever a change is committed to a tool, said tool is automatically redeployed. More details about the configuration of the staging environment can be found in deliverable D2.7 [1].
[bookmark: _Toc20212696]Production integration environment
The goal of the production environment is to have a more static version of DECIDE, for high-level testing and for use-cases testing. This environment is set up exactly the same way as the staging one, in a second AIMES machine, only with the automatic deployment disabled and configured to redeploy tools every 15 days.
This section will describe how the pipelines to build and deploy the different tools have been set up.
DEVOPS FRAMEWORK:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/devops
· Build Server:
· Execute maven clean package command
· Build image decideapp/devopsframework-server
· Build frontend:
· Execute command npm install
· Build image decideapp/devopsframework-client
· Init containers
· Execute command docker up -d with docker-compose.yml
version: "2"
services:

 nginx:
 image: nginx:latest
 container_name: nginx
 restart: always
 ports:
 - "8000:8000"
 volumes:
 - ./config/nginx-dev.conf:/etc/nginx/conf.d/nginx.conf
 depends_on:
 - devopsframework-server
 networks:
 - decide

 devopsframework-mongodb:
 image: mongo:latest
 container_name: devopsframework-mongodb
 restart: on-failure
 ports:
 - 27017:27017
 networks:
 - decide

 devopsframework-vault:
 image: vault:latest
 container_name: devopsframework-vault
 restart: on-failure
 ports:
 - 8200:8200
 networks:
 - decide

 devopsframework-server:
 build: ./devopsframework-server
 container_name: devopsframework-server
 restart: always
 ports:
 - 4000:4000
 - 5005:5005
 environment:
 - SPRING_PROFILES_ACTIVE=dev
 links:
 - devopsframework-mongodb
 depends_on:
 - devopsframework-mongodb
 networks:
 - decide

 devopsframework-client:
 build: ./devopsframework-client
 container_name: devopsframework-client
 restart: always
 ports:
 - 81:80
 volumes:
 - ./devopsframework-client:/usr/src/app
 environment:
 - ENVIRONMENT=dev
 depends_on:
 - devopsframework-server
 networks:
 - decide

networks:
 decide:
 external: true

ARCHITECT:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/architect-ui
· Build:
· Execute command npm install
· Execute command npm custom
· Build image localhost:5000/decideapp/architect-ui with Dockerfile
FROM nginx:1.15-alpine

MAINTAINER benjamin.dittwald@fokus.fraunhofer.de

ADD dist.tar.gz /usr/share/nginx/html/
COPY nginx.vh.default.conf /etc/nginx/conf.d/default.conf

The following steps are needed because of the OpenShift security constraints
Create some temp folders for later permission granting
RUN mkdir /var/cache/nginx/uwsgi_temp && \
 mkdir /var/cache/nginx/client_temp && \
 mkdir /var/cache/nginx/proxy_temp && \
 mkdir /var/cache/nginx/fastcgi_temp && \
 mkdir /var/cache/nginx/scgi_temp && \
 chmod g+rwx /var/cache/nginx /var/run /var/log/nginx /var/cache/nginx/client_temp

EXPOSE 8080

OPTIMUS:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/WP3
· Build Server:
· Run docker command
build -f
Optimus/eu.decideh2020.int.optimus.server.src.dvp/src/main/docker/Dockerfile
--build-arg GIT_CREDENTIALS=$(GIT_CREDENTIALS)
--build-arg APPMANAGER_VERSION=$(APPMANAGER_VERSION_OPTIMUS)
--build-arg ACSMI_VERSION=$(ACSMI_VERSION)
--rm --no-cache -t $(DecideRegistry)/$(Repository):$(OptimusImageTag) Optimus/eu.decideh2020.int.optimus.server.src.dvp/src/main/docker

MCSLA:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/mcsla-service
· Build mcsla-service:
· Execute maven clean package command
· Build image decideapp/mcsla-service with Dockerfile
FROM openjdk:8-jre

ENV VERTICLE_FILE mcsla-service-fat.jar

Set the location of the verticles
ENV VERTICLE_HOME /usr/verticles

EXPOSE 8080

RUN addgroup --system vertx && adduser --system --group vertx

Copy your fat jar to the container
COPY target/$VERTICLE_FILE $VERTICLE_HOME/

RUN chown -R vertx $VERTICLE_HOME
RUN chmod -R g+w $VERTICLE_HOME

USER vertx

Launch the verticle
WORKDIR $VERTICLE_HOME
ENTRYPOINT ["sh", "-c"]
CMD ["exec java -Xmx2048m -jar $VERTICLE_FILE -Dvertx.logger-delegate-factory-class-name=io.vertx.core.logging.SLF4JLogDelegateFactory -Dvertx.metrics.options.enabled=true"]

· Get Resources from GIT - https://git.code.tecnalia.com/decide/mcsla-ui
· Build mcsla-ui:
· Execute command npm install
· Execute command npm custom
· Build image decideapp/mcsla-ui with Dockerfile
FROM httpd:alpine

ENV APACHE2_HOME /usr/local/apache2

COPY ./build/ $APACHE2_HOME/htdocs/
COPY ./httpd.conf $APACHE2_HOME/conf/httpd.conf
COPY ./runtimeconfig.sh $APACHE2_HOME/conf/runtimeconfig.sh

RUN chown -R www-data $APACHE2_HOME
RUN chmod -R g+w $APACHE2_HOME
RUN chmod gu+x $APACHE2_HOME/conf/runtimeconfig.sh

RUN apk update && apk add --no-cache jq

USER www-data

EXPOSE 8080

ENTRYPOINT ["/usr/local/apache2/conf/runtimeconfig.sh"]
CMD ["httpd-foreground"]

ACSmI Discovery:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/WP5
· Stop Containers:
· Execute command docker stop jhipster.registry
· Execute command docker stop acsmi.mysql
· Execute command docker stop acsmi.frontend
· Execute command docker stop acsmi.backend.services
· Execute command docker stop acsmi.backend.services.test.00
· Remove Containers:
· Execute command docker rm jhipster.registry
· Execute command docker rm acsmi.mysql
· Execute command docker rm acsmi.frontend
· Execute command docker rm acsmi.backend.services
· Execute command docker rm acsmi.backend.services.test.00
· Build server base:
· Execute command
Build
ACSmI_discovery/eu.decideh2020.springboot.server.repo.src.dvp/src/main/docker -t decideh2020/jhipster.repo:latest --build-arg GIT_CREDENTIALS=$(ACSMI_Monitoring_Git_Creds) --build-arg ARTIFACTORY_USE=N --build-arg VERSION=latest

· Build registry:
· Execute command
build
ACSmI_discovery/eu.decideh2020.int.acsmi.registry.server.src.dvp/src/main/docker -t decideh2020/jhipster.registry:latest --build-arg GIT_CREDENTIALS=$(ACSMI_Monitoring_Git_Creds) --build-arg ARTIFACTORY_USE=N --build-arg VERSION=latest

· Build backend:
· Execute command
build --no-cache
ACSmI_discovery/eu.decideh2020.int.acsmi.backend.services.server.src.dvp/src/main/docker -t decideh2020/acsmi.backend.services:latest --build-arg GIT_CREDENTIALS=$(ACSMI_Monitoring_Git_Creds) --build-arg ARTIFACTORY_USE=N --build-arg VERSION=latest

· Build frontend:
· Execute command
build --no-cache
ACSmI_discovery/eu.decideh2020.int.acsmi.frontend.server.src.dvp/src/main/docker -t decideh2020/acsmi.frontend:latest --build-arg GIT_CREDENTIALS=$(ACSMI_Monitoring_Git_Creds) --build-arg ARTIFACTORY_USE=N --build-arg VERSION=latest

· Build MySQL:
· Execute command

build
ACSmI_discovery/eu.decideh2020.int.acsmi.mysql.server.src.dvp/src/main/docker -t decideh2020/acsmi.mysql:latest --build-arg VERSION=latest

· Build test00:
· Execute command
build --no-cache
ACSmI_discovery/eu.decideh2020.int.acsmi.backend.services.server.test.00.src.dvp/src/main/docker -t decideh2020/acsmi.backend.services.test.00:latest --build-arg VERSION=latest

· Run Containers:
· Execute command
docker run -d --name jhipster.registry -d --restart=always --network decide
decideh2020/jhipster.registry

· Execute command
docker run -d --name acsmi.mysql -d --restart=always --env
MYSQL_ALLOW_EMPTY_PASSWORD=yes --network decide decideh2020/acsmi.mysql

· Execute command
docker run -d --name acsmi.frontend -d --restart=always -p 8087:8080
--network decide decideh2020/acsmi.frontend

· Execute command
docker run -d --name acsmi.backend.services -d --restart=always
--network decide decideh2020/acsmi.backend.services

· Execute command
docker run -d --name acsmi.backend.services.test.00 -d --restart=no
--env MYSQL_DB_USER=root --env MYSQL_DB_NAME=acsmi_backend_services_server
--env MYSQL_DB_HOST=acsmi.mysql --network decide decideh2020/acsmi.backend.services.test.00

ACSmI Contracting:
· Get Resources from docker hub – cloudbroker/acsmi-contracting
· Create docker-compose-yml:
version: '2'
services:
 contracting:
 image: cloudbroker/acsmi-contracting:latest
 ports:
 - '8089:80'
 environment:
 UPDATE_ENVS: 'true'
 PLATFORM_URL: 'https://decide-prototype.cloudbroker.com'
 PLATFORM_EMAIL: 'acsmi.contracting@scaletools.com'
 PLATFORM_PASSWORD: ******
 DISCOVERY_URL: 'http://XX.XX.XX.XX:XXXX'
 DISCOVERY_USERNAME: '*****'
 DISCOVERY_PASSWORD: *****
 SECRET_KEY_BASE: '#######################'

· Execute docker compose command down
· Execute docker compose command up -d
· Execute command docker network connect decide acsmi_contracting_1
· Start SQLite
· Execute command docker exec -u app acsmi_contracting_1 rake db:create db:migrate db:seed
ACSmI Billing:
· Get Resources from docker hub – cloudbroker/acsmi-billing
· Create docker-compose-yml:
version: '2'
services:
 billing:
 image: cloudbroker/acsmi-billing:latest
 container_name: acsmi-billing
 ports:
 - '8085:80'
 environment:
 SECRET_KEY_BASE: '#######################'

· Execute docker compose command down
· Execute docker compose command up -d
· Execute command docker network connect decide acsmi_billing
· Start SQLite
· Execute command docker exec -u app acsmi_billing rake db:create db:migrate db:seed
ADAPT DO:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/Adapt-do
· Build:
· Build image localhost:5000/decideapp/adapt-do
· Run
· Execute command docker run -p 8473:80 -d --name adapt-do $(DecideRegistry)/$(Repository):$(AdaptDOImageTag)
· Consul service
sudo mkdir -p /usr/local/bin
sudo unzip -o /home/javier/consul/consul.zip -d /usr/local/bin
mkdir -p /home/javier/consul/config
cat >/home/javier/consul/config/config.json << EOF
{
 "datacenter": "dc-decide",
 "encrypt": "s2aLWrsvz+h0w6HM/NkXRA==",
 "addresses" : {
 "http": "$WAN_ADVERTISE_ADDRESS"
 }
}
EOF

nohup /usr/local/bin/consul agent -bootstrap-expect=1 -server -data-dir= /home/javier/consul/data -config-file=/home/javier/consul/config/config.json -advertise-wan=$WAN_ADVERTISE_ADDRESS -bind=$BIND_ADDRESS -ui -client=$CLIENT_ADDRESS > /home/javier/consul/nohup.out &

ADAPT MONITORING:
· Get Resources from GIT - https://git.code.tecnalia.com/decide/WP5
· Stop Containers:
· Execute command docker stop acsmi.influxdb
· Execute command docker stop acsmi.monitoring.management
· Remove Containers:
· Execute command docker rm acsmi.influxdb
· Execute command docker rm acsmi.monitoring.management
· Build influxDB:
· Execute command
build
ACSmI_monitoring/eu.decideh2020.int.acsmi.monitoring.influxdb.server.src.dvp/src/main/docker -t decideh2020/acsmi.influxdb:latest --build-arg VERSION=latest

· Build Management:
· Execute command
Build
ACSmI_monitoring/eu.decideh2020.int.acsmi.monitoring.management.server.src.dvp/src/main/docker -t decideh2020/acsmi.monitoring.management:latest --build-arg GIT_CREDENTIALS=$(ACSMI_Monitoring_Git_Creds) --build-arg ARTIFACTORY_USE=N --build-arg VERSION=latest

· Run Containers:
· InfluxDB execute command
docker run -d -p 8086:8087 --name acsmi.influxdb -d -e
INFLUXDB_DB='decideh2020acsmi' --env PASSWORD=******* --network decide decideh2020/acsmi.influxdb

· Management execute command
run -d --restart always --name acsmi.monitoring.management -d -p
$(ACSmIMonitoringPortMapping) --link acsmi.influxdb:influxdb --env USER_GIT=$(USER_GIT) --env TOKEN_GIT=$(TOKEN_GIT) --network decide decideh2020/acsmi.monitoring.management
[bookmark: _Toc18574971][bookmark: _Toc18578018]

[bookmark: _Toc20212697]DECIDE Orchestration
As it was introduced in deliverable D2.7 [1], DECIDE requires a component that handles the triggering of the appropriate tool in automatic workflows and that enables or disables these tools according to the information they have received so far.
This section provides an update for the state machine proposed in the aforementioned deliverable. The final version of the state machine provides support for the redeployment workflows, for both high and low technological risk applications. It also includes the ACSmI Billing component, which had been left out in the previous version. It has been decided as well that the state machine will be a central component that is part of the DevOps Framework. The following figure shows the state machine diagram:
[image:]
[bookmark: _Toc20212719]Figure 2. DECIDE State machine diagram
As with the first version of the state machine, the different states of the diagram represent the tools that are “enabled”, that is, they have all the necessary information to work. For simplicity, an enabled tool indicates that all “previous” tools (tools that have intervened before) are also enabled.
The ADAPT DO (& Billing) state indicates that both ADAPT DO and ACSmI Billing will be enabled when that state is reached. The justification for this is that the Billing component has to be activated after the contracts are created, but it does not “finish its execution” as the other tools: users can check billing information at any point after they have contracted the cloud services.
The Automatic redeployment state is reached if a violation is received for an application with low technological risk. In this state, the DevOps Framework will invoke all tools involved in a redeployment workflow (OPTIMUS, MCSLA and ADAPT DO) sequentially and without user intervention. This state will be exited after ADAPT DO has redeployed the application, moving to the Monitoring state to wait for new violations.
¡Error! No se encuentra el origen de la referencia. details the tools that are enabled in each state:
[bookmark: _Toc20212742]Table 1. Relationship between states and enabled tools
	State
	Enabled tools

	DevOps Framework
	DevOps Framework

	ARCHITECT
	DevOps Framework
ARCHITECT

	OPTIMUS
	DevOps Framework
ARCHITECT
OPTIMUS

	MSCLA
	DevOps Framework
ARCHITECT
OPTIMUS
MCSLA

	ACSmI Contracting
	DevOps Framework
ARCHITECT
OPTIMUS
MCSLA
ACSmI Contracting

	ADAPT DO (& Billing)
	DevOps Framework
ARCHITECT
OPTIMUS
MCSLA
ACSmI Contracting
ACSmI Billing
ADAPT DO

	Monitoring
	DevOps Framework
ARCHITECT
OPTIMUS
MCSLA
ACSmI Contracting
ACSmI Billing
ADAPT DO
Monitoring (ADAPT MM and ACSmI Monitoring)

	Automatic redeployment
	This state does not enable any tool. The state machine component triggers the corresponding tools sequentially until the application has been redeployed.

Transitions are the signals that move one state to the next. They are sent by each of the KRs right after they have finished their execution and written the corresponding data in the application description. That implies that the subsequent tool is ready to be used, so access to it will be enabled. This is a departure from the first approach, which relied on the variables that had been written into the application description to change states, since the current version greatly simplifies the process. The different transitions are explained below:
· basicInfo: the basic project’s information has been introduced from the Wizard (name, Git repository, microservices, NFRs) and has been committed to Git.
· patterns: patterns have been selected by the user from the list provided by ARCHITECT
· schema: one of the schemas proposed by OPTIMUS has been selected by the user
· MCSLA: the MCSLA has been created
· contracts: the contracts have been created
· deployment: the microservices have been deployed by ADAPT
· violation: a violation has been received
[bookmark: _Toc18427039][bookmark: _Toc18427040][bookmark: _Toc18427041][bookmark: _Toc18427042][bookmark: _Toc18427043][bookmark: _Toc18427044][bookmark: _Toc18427045][bookmark: _Toc18427046][bookmark: _Toc18427047][bookmark: _Toc18427048][bookmark: _Toc18427049][bookmark: _Toc18427050][bookmark: _Toc18427051][bookmark: _Toc18427052][bookmark: _Toc18427112][bookmark: _Toc18427113][bookmark: _Toc18427114][bookmark: _Toc18427115][bookmark: _Toc18427116][bookmark: _Toc18427117][bookmark: _Toc18427118][bookmark: _Toc18427119][bookmark: _Toc18427120][bookmark: _Toc18427121][bookmark: _Toc18427122][bookmark: _Toc18427123][bookmark: _Toc18427124][bookmark: _Toc18427125][bookmark: _Toc18427126][bookmark: _Toc18427127][bookmark: _Toc18427128][bookmark: _Toc18427129][bookmark: _Toc18427130][bookmark: _Toc18427131][bookmark: _Toc18427132][bookmark: _Toc18427133][bookmark: _Toc18427134][bookmark: _Toc20212698]DECIDE UI
The DECIDE Framework provides a graphical user interface to provide access to the different DECIDE tools (KRs).
This graphical interface allows a user to create a DECIDE application, introducing the most relevant data about the application (name, location of the code, number of microservices, NFRs, …) which will later be written into the Application Description. It also includes a dashboard, that gives an overview of the status of the DECIDE tools. Besides, the DevOps Framework integrates the UIs of the different tools, via iframe or API. More information about this can be found in Section 3 of deliverable D2.2 [2].
Furthermore, the final version of the DevOps Framework’s UI, thanks to the integration with the state machine described in the previous section, lets a user know if a certain tool is “active”, that is, whether or not it has received all the information it requires to work. Thus, the DECIDE UI disables access to the tools by showing a red icon next to the corresponding button, until they are ready to be executed, moment in which the icon changes to green.
Lastly, it is important to know that the naming of the labels that give access to the DECIDE tools have been changed to be more descriptive. This way, a user who is not familiar with the DECIDE environment will find it easier to understand the purpose of these tools.
The following image shows the new aspect of the DECIDE UI Dashboard. Annex A shows the final version of the interfaces of the integrated tools:
[image:]
[bookmark: _Toc20212720]Figure 3. DevOps framework’s UI. Final version

[bookmark: _Toc18578021][bookmark: _Toc18578022][bookmark: _Toc18578023][bookmark: _Toc18578024][bookmark: _Toc18578025][bookmark: _Toc18578026][bookmark: _Toc18578027][bookmark: _Toc18578028][bookmark: _Toc18578029][bookmark: _Toc18578030][bookmark: _Toc18578031][bookmark: _Toc18578032][bookmark: _Toc18578033][bookmark: _Toc18427136][bookmark: _Toc18427137][bookmark: _Toc18427138][bookmark: _Toc18427139][bookmark: _Toc18427140][bookmark: _Toc18427141][bookmark: _Toc18427142][bookmark: _Toc18427143][bookmark: _Toc18427144][bookmark: _Toc18427145][bookmark: _Toc18427146][bookmark: _Toc18427147][bookmark: _Toc18427148][bookmark: _Toc18427149][bookmark: _Toc18427150][bookmark: _Toc18427151][bookmark: _Toc18427152][bookmark: _Toc18427153][bookmark: _Toc18427154][bookmark: _Toc18427155][bookmark: _Toc18427156][bookmark: _Toc18427157][bookmark: _Toc18427158][bookmark: _Toc18427159][bookmark: _Toc18427160][bookmark: _Toc18427161][bookmark: _Toc18427162][bookmark: _Toc18427163][bookmark: _Toc18427164][bookmark: _Toc20212699]Implementation
[bookmark: _Toc358299041][bookmark: _Toc463258798][bookmark: _Toc20212700]Functional description
[bookmark: _Toc223686014][bookmark: _Toc232271333]The DECIDE DevOps Framework is the platform from which the different tools (KRs) will be accessed. Its main purpose is to offer an intuitive interface to the user where they can set up a specific multi-cloud native application and consume any of the other tools integrated in the system. The framework provides an entry point to DECIDE and handles the interconnection between all the elements involved, providing a global overview about the state of the application to the end user. Furthermore, the DevOps Framework takes care of the user and application management and provides the necessary infrastructure to safely store and share sensitive information. Lastly, the latest version of the DevOps Framework controls the DECIDE workflow, enabling tools as they are ready to be used and triggering the corresponding component when appropriate.
Functionalities:
DECIDE DevOps framework follows an incremental strategy, according to which different prototypes of the framework are periodically released (in months 15, 27 and 33). The current M33 prototype improves upon the M27 version and provides full coverage of the expected functionalities:
1. Entry point. Covered. This prototype provides a platform with centralized access to all DECIDE tools.
2. KR integration. Covered. The prototype gives access to all DECIDE KRs and enables communication amongst them.
3. Workflow orchestration. Covered. The DevOps framework provides the means to launch the different tools, and automatically triggers some components. Besides, this version is able to enable or disable access to tools depending on whether or not all the necessary information has been provided to said tools, and, in case of an automatic redeployment, to trigger the appropriate tool when it corresponds.
4. Application configuration. Covered. The prototype lets users create and configure applications, by letting them introduce all the necessary information about them either from the General editor or from the corresponding tab of the tool.
5. User and application management. Covered. The prototype provides infrastructure to manage user access and the application(s) that each user is working on.
6. Secrets management. Covered. The prototype provides access to Vault, a component that safely stores sensitive information and enables its secure sharing.
Requirements:
The global requirements for the DECIDE DevOps Framework have been analyzed, reviewed and gathered in D2.1 [3] and revised in D2.2 [2]. The following table provides the status of the implementation of these requirements in the M33 prototype. The table represents an update on the requirements implemented for the M27 release and documented in section 6.1 of deliverable D2.7 [1].
[bookmark: _Ref506378540][bookmark: _Toc20212743]Table 2. Requirements covered by the M33 prototype
	Req. ID
	Req. Description
	Requirement coverage by the prototype

	KR1-REQ1
	The system must provide the user with an entry point to DECIDE.
	The prototype provides access to a platform from which the different tools can be utilized.

	KR1-REQ2
	The system must unify transparently the UIs from the different KRs.
	The prototype provides access to the tools, whose UI will be embedded in the platform, following a common set of guidelines.

	KR1-REQ3
	The system must provide a generic DECIDE UI.
	The prototype includes a dashboard that unifies information from some of the tools to give an overview of the application status

	KR1-REQ4
	The system must receive ARCHITECT's patterns.
	Although the prototype does not receive patterns as such due to design reasons, it provides access to the patterns repository and allows a user to select what patterns will be applied to the application.

	KR1-REQ5
	The developer must have access to a development environment with the received patterns.
	Requirement rejected. ARCHITECT’s patterns do not finally include code snippets that can be received by a development environment.

	KR1-REQ6
	The developer must have access to a development environment with preloaded DECIDE configurations.
	The prototype allows its users to import Application Description files, which would load a certain DECIDE configuration.

	KR1-REQ7
	The system must allow the developer to submit their code.
	This functionality is provided by Eclipse.

	KR1-REQ8
	The system must be able to version the code submitted by the developer.
	This functionality is provided by Git.

	KR1-REQ9
	The system must be able to resolve the dependencies of the submitted code.
	This functionality is provided by Eclipse/Git.

	KR1-REQ10
	The system must compile the code without errors.
	This functionality is provided by Jenkins.

	KR1-REQ11
	The system must receive the testing activities that have to be performed on the code.
	This functionality is provided by SonarQube.

	KR1-REQ12
	The system must be able to perform the received testing activities.
	 This functionality is provided by SonarQube.

	KR1-REQ13
	The system must present the results from the testing activities.
	 This functionality is provided by SonarQube.

	KR1-REQ14
	The system must guarantee the continuity of the code within DECIDE's workflow.
	The code resides in a Git repository that is accessible by all tools.

	KR1-REQ15
	The system must make the code available for DECIDE.
	The prototype provides an option to indicate where the code is located, making it available for all tools.

	KR1-REQ16
	The system must guarantee the fulfilment of DECIDE's patterns by the developer.
	Requirement rejected.

	KR1-REQ17
	DECIDE DevOps framework must provide support for NFR gathering.
	The prototype provides a General Editor that will let the user specify the application’s NFRs.

	KR1-REQ18
	The system must support developers establishing qualitative NFP that the application must comply with (i.e. security, location, financial, low/high technological risk).
	The prototype provides a General Editor that will let the user specify application’s NFPs.

	KR1-REQ19
	The system must support developers establishing quantitative NFP that the application must comply with (i.e. MTBF, availability, response time, lag, cost, throughout)).
	The prototype provides a wizard that will let the user specify application’s NFPs related to availability and cost.

	KR1-REQ20
	The system must include a (MC)SLA editor.
	The MCSLA editor is integrated in the prototype.

	KR1-REQ21
	The system must include an Application Controller.
	The prototype utilizes the Application Controller to update the Application Description file.

	DEVOPS-REQ1
	DECIDE framework must facilitate small and frequent updates of the code.
	The prototype provides continuous integration, which facilitates small and frequent updates of the code.

	DEVOPS-REQ2
	DECIDE framework must support the automatic deployment of the infrastructure required for the development.
	Requirement rejected. Development is performed locally, there is no need to deploy a development environment.

	DEVOPS-REQ4
	DECIDE framework must use microservices.
	The prototype is built following a microservices architecture.

	DEVOPS-REQ5
	DECIDE framework must support the continuous integration of the developed apps.
	The prototype supports the continuous integration of the code.

	DEVOPS-REQ10
	DECIDE framework must provide a way for team members to communicate with each other.
	Requirement rejected. Out of scope of the project.

	DEVOPS-REQ11
	DECIDE framework must provide a way for team members to plan the development process.
	Requirement rejected. Out of scope of the project.

	DEVOPS-REQ13
	DECIDE framework must support the application of best practices and design principles during the first phases of the development.
	The framework, through the ARCHITECT component, provides development patterns, which are based on best practices and design principles of application development.

	KR1-REQ22
	DECIDE framework must provide a way to securely share sensitive information amongst the different Key Results
	The prototype integrates Vault, a component for securely sharing and storing secrets.

	KR1-REQ23
	DECIDE framework must provide a way to manage its users and the projects that these users can access
	The prototype provides user and application management.

[bookmark: _Toc1576143][bookmark: _Toc1576144][bookmark: _Toc463258799][bookmark: _Toc20212701]Fitting into overall DECIDE Architecture
Before explaining in-depth the most important technical aspects of the DevOps framework implementation, we introduce how the framework is connected with the rest of DECIDE modules and represent the interfaces that enable the communication among them.
As described above, the DevOps framework is responsible for providing an intuitive user interface (UI) to developers and operators, so that they are able to orchestrate the communication between the different DECIDE tools and can provide as input all the parameters necessary to execute them.
Most of the information required by the tools is contained inside the Application Description, which is a configuration file hosted remotely in JSON format, that can be edited by the DevOps framework and by any of the DECIDE tools by means of the Application Controller.
The final version of the DevOps framework can also handle access to the different tools, only enabling them when all the required information has been introduced, and can orchestrate the DECIDE workflow, triggering the corresponding tool during an automatic deployment.
The following picture shows how the DevOps framework fits in the general architecture:
[image:]
[bookmark: _Toc20212721]Figure 4. DevOps Framework within DECIDE
[bookmark: _Toc358299042][bookmark: _Toc463258800]The DevOps Framework is composed of a backend, responsible for storing and manipulating data, and a frontend that, on one hand, unifies the UIs of the different tools and, on the other, provides a Dashboard to give an overview of the status of the application.
Besides, a Vault instance is deployed within the DevOps Framework to handle storage and sharing of sensitive information. The DECIDE KRs will access this component when they require any secret.
Lastly, this version of the DevOps Framework includes a state machine component, which is responsible for the orchestration of the DECIDE workflow.
[bookmark: _Toc20212702]Technical description
In this section we describe the technical specifications of the DevOps framework implementation, explaining the global architecture of the system and the behaviour of the main components.
[bookmark: _Toc358299043][bookmark: _Toc463258801][bookmark: _Toc20212703]Prototype architecture
The DevOps Framework is designed as a microservices architecture based on isolated containers that communicate with each other to obtain the required data. The general architecture of the DevOps framework for this final version is shown in the diagram below. It differs from the previous (intermediate) version in that it includes the state machine component that has been described previously, and it integrates the ACSmI Billing component.
The framework is composed of multiple modules that communicate with each other using Cloud Computing techniques, such as service discovery between each module, or load balancing to control traffic inside the containers network.
[image:]
[bookmark: _Toc20212722]Figure 5. DevOps Framework prototype’s architecture diagram
The DevOps Framework interacts with the microservices that correspond with the DECIDE KRs (ARCHITECT, OPTIMUS, MCSLA, ACSmI and ADAPT). It also deploys instances of SonarQube and Jenkins, Vault, for secrets sharing, and a state machine for workflow orchestration.
In addition, the framework communicates with a local database to store data relative to user access and application management. The details of this process, along with the Vault system, have been detailed in section 5.2.2 of deliverable D2.7 [1].
Regarding the isolation of each microservice, and as mentioned in deliverable D2.6 [4], the DevOps platform has been deployed using Docker technology, which allows to containerize each application inside a separated component, and redirect the communication with the rest of the network containers, handling network aspects such as service discovery techniques, REST client definition or load balancing between nodes. Finally, this cloud architecture provides a solution ensuring high scalability and fault tolerance, obtaining as a result, a robust approach that allows to implement new tools in the future or adapt the platform easily, in case a tool includes important changes in upcoming versions.
[bookmark: _Toc358299044][bookmark: _Toc463258802][bookmark: _Ref1570572][bookmark: _Ref1570596][bookmark: _Ref1570616][bookmark: _Toc20212704]Components description
This section aims at describing the detail of the DevOps Framework’s components. The implementation of most of them has not changed since the first prototype of the framework and has already been described in deliverable D2.6 [4], so this section will only analyse those components that have been added for this release: the state machine component and the updates to the DECIDE UI.
[bookmark: _Toc20212705]State machine API
The state machine is started directly from the State Machine component through the REST interface. In order to test it independently, it needs to be launched externally by a call to the REST interface.
http://85.91.40.245:8095/statemachine/swagger-ui.html¡Error! Referencia de hipervínculo no válida.
This is the yaml configuration file generated from the swagger editor with whole state machine API configuration:
swagger: '2.0'
info:
 description: This is the API documentation for State Machine service of DECIDE h2020 european project
 version: 1.0.0
 title: State Machine
host: '85.91.40.245:8095'
basePath: /statemachine
tags:
 - name: state-machine-api-controller
 description: the state machine API
paths:
 /setState:
 post:
 tags:
 - state-machine
 summary: Change state from application
 description: Report a new application state in the system
 operationId: setState
 consumes:
 - application/json
 produces:
 - application/json
 parameters:
 - in: body
 name: state
 description: State that wants to be reported
 required: true
 schema:
 $ref: '#/definitions/state'
 responses:
 '200':
 description: successful operation
 '401':
 description: Unauthorized
 '403':
 description: Forbidden
 '404':
 description: Not Found
 /getState:
 get:
 tags:
 - state-machine
 summary: Get the state of application
 description: Get the application state
 operationId: getState
 consumes:
 - application/json
 produces:
 - application/json
 parameters:
 - in: body
 name: data
 description: Data to find state machine
 required: true
 schema:
 $ref: '#/definitions/data'
 responses:
 '200':
 description: successful operation
 schema:
 items:
 $ref: '#/definitions/state'
 '401':
 description: Unauthorized
 '403':
 description: Forbidden
 '404':
 description: Not Found
definitions:
 state:
 type: object
 required:
 - app
 - user
 - state
 properties:
 app:
 type: string
 example: a1b2c3d4e5f6
 description: Id of the application
 user:
 type: string
 example: John
 description: Id of the user
 state:
 type: string
 example: detected
 description: 'States of the application. Required values: SLA (0), CSP (1) or Microservice(2) '
 description: State machine object description
 data:
 type: object
 required:
 - app
 - user
 properties:
 app:
 type: string
 example: a1b2c3d4e5f6
 description: Id of the application
 user:
 type: string
 example: John
 description: Id of the user
 description: State machine object description

The state machine API consists of 2 methods:
· setState
[image:]
When a user changes the application state using the DevOps framework, all components update the application status with this method. For testing purposes, it is necessary to pass the application name, username and the state of the application. Said state will be then updated in database.
· getState
[image:]
Automatically, the DevOps framework looks for the state of the current app using the getState method. For testing, it is necessary to pass the application and username and this method will look for the state in the database.
[bookmark: _Toc18574981][bookmark: _Toc18578041][bookmark: _Toc18574982][bookmark: _Toc18578042][bookmark: _Toc18574983][bookmark: _Toc18578043][bookmark: _Toc18574984][bookmark: _Toc18578044][bookmark: _Toc18574985][bookmark: _Toc18578045][bookmark: _Toc18574986][bookmark: _Toc18578046][bookmark: _Toc20212706]UI updates
The DevOps framework UI reflects the changes in the state, enabling new tools as the user advances in the workflow. When a new state is reached, the icon of the tool(s) affected by this state changes, to indicate that the tool is enabled or disabled.
A red icon means that the tools is not yet ready to be used, while a green icon represents that the tools has received all the required information and can be executed.
The following figure shows the new DevOps framework menu, where the first four tools are enabled and the last four are disabled (the Dashboard is always enabled by default):
[image:]
[bookmark: _Toc20212723]Figure 6. DevOps Framework UI. Connection to state machine

[bookmark: _Toc363481][bookmark: _Toc1547637][bookmark: _Toc1553954][bookmark: _Toc1576151][bookmark: _Toc363482][bookmark: _Toc1547638][bookmark: _Toc1553955][bookmark: _Toc1576152][bookmark: _Toc363483][bookmark: _Toc1547639][bookmark: _Toc1553956][bookmark: _Toc1576153][bookmark: _Toc363484][bookmark: _Toc1547640][bookmark: _Toc1553957][bookmark: _Toc1576154][bookmark: _Toc363485][bookmark: _Toc1547641][bookmark: _Toc1553958][bookmark: _Toc1576155][bookmark: _Toc363486][bookmark: _Toc1547642][bookmark: _Toc1553959][bookmark: _Toc1576156][bookmark: _Toc363487][bookmark: _Toc1547643][bookmark: _Toc1553960][bookmark: _Toc1576157][bookmark: _Toc363488][bookmark: _Toc1547644][bookmark: _Toc1553961][bookmark: _Toc1576158][bookmark: _Toc363489][bookmark: _Toc1547645][bookmark: _Toc1553962][bookmark: _Toc1576159][bookmark: _Toc363490][bookmark: _Toc1547646][bookmark: _Toc1553963][bookmark: _Toc1576160][bookmark: _Toc363491][bookmark: _Toc1547647][bookmark: _Toc1553964][bookmark: _Toc1576161][bookmark: _Toc363492][bookmark: _Toc1547648][bookmark: _Toc1553965][bookmark: _Toc1576162][bookmark: _Toc363493][bookmark: _Toc1547649][bookmark: _Toc1553966][bookmark: _Toc1576163][bookmark: _Toc363494][bookmark: _Toc1547650][bookmark: _Toc1553967][bookmark: _Toc1576164][bookmark: _Toc363495][bookmark: _Toc1547651][bookmark: _Toc1553968][bookmark: _Toc1576165][bookmark: _Toc363496][bookmark: _Toc1547652][bookmark: _Toc1553969][bookmark: _Toc1576166][bookmark: _Toc363497][bookmark: _Toc1547653][bookmark: _Toc1553970][bookmark: _Toc1576167][bookmark: _Toc363498][bookmark: _Toc1547654][bookmark: _Toc1553971][bookmark: _Toc1576168][bookmark: _Toc363499][bookmark: _Toc1547655][bookmark: _Toc1553972][bookmark: _Toc1576169][bookmark: _Toc363500][bookmark: _Toc1547656][bookmark: _Toc1553973][bookmark: _Toc1576170][bookmark: _Toc363501][bookmark: _Toc1547657][bookmark: _Toc1553974][bookmark: _Toc1576171][bookmark: _Toc1576172][bookmark: _Toc1576173][bookmark: _Toc1576174][bookmark: _Toc358299046][bookmark: _Toc463258804][bookmark: _Toc20212707]Delivery and usage
[bookmark: _Toc20212708]Package information
This section will briefly detail the architecture of each component. Since there are a lot of files involved, only the most representative ones will be explained to provide a better understanding of the DevOps Framework architecture.
It is important to remark that the general architecture of the DevOps framework components have not changed since the previous release, reported in deliverable D2.7 [1]. In order to have all components documented in one place, the information from the intermediate version has not been removed, highlighting instead the new additions in this release.
The annex of the deliverable mentioned above also contains multiple code snippets of the documented components.
[bookmark: _Toc20212709]DevOps Framework Client
Here it is contained the front-end code developed in Angular 6. It provides the interface with which users can interact, and the communication with the back-end application.
[image:]
[bookmark: _Toc20212724]Figure 7. DevOps Framework Client’s file structure
Acsmi-contracting, Acsmi-discovery, Adapt Monitoring, Adapt UI, MCSLA, Architect, optimus and Billing
These modules request the correct URL of the service from .ts file and through the .html file shows an iframe or a table to show the data to the user in front-end. In the latest release, ACSmI Billing has been integrated in the DevOps UI. The following figures show two sample code excerpts of these components:
[image:]
[bookmark: _Toc20212725]Figure 8. HTML code of ACSmI Contracting module
[image:]
[bookmark: _Toc20212726]Figure 9. TS code of ACSmI Discovery module

[image:]
[bookmark: _Toc20212727]Figure 10. TS code of ACSmI Billing module

Components, Dialogs, Modal, Wizard, Wizard-step, Notifications
These modules contain “auxiliary” components to import in the application, such as footer or navbar.
[image:]
[bookmark: _Toc20212728]Figure 11. Structure of the “components” module
Guards
This component contains the file auth.guards.ts to manage the permissions.
Login
Provides the view and the logic to implement the login view
Edit Profile
This functionality has been added in the final release. Provides the view and the logic to edit user profile.
Credentials
This functionality has been added in the final release. Provides the view and the logic to edit user credentials info and to store them safely.
Microservice-editor and nfr-editor
Both components implement the form to insert new microservices, or new NFRs during the creation of the project.
Models
This module contains the data models. Below, the structure of this module is shown, as well as a code snippet. The latest version is updated to be coherent with the data model defined by the application controller.
[image:]
[bookmark: _Toc20212729]Figure 12. Structure of the “models” module
export class DecideProject {
 //General project parameters
 name:string;
 description:string;
 gitRef:string;
 token:string;
 //Application Description
 highTechnologicalRisk:boolean;
 importDescription:boolean;
 schemaVersion:string;
 microservices:Microservice[];
 nfrs: NFR[];
}
export class Microservice{
 id:string;
 name:string;
 stateful:Boolean;
 programmingLanguage:string;
 tags: any[];
 publicIp:Boolean;
 endpoints: any[];
}
export class NFR{
 type:string;
 abstractValue: string;
 value: String;
 unit: string;
 tags: any[];
}
[bookmark: _Toc20212730]Figure 13. Code snippet of the “models” module
Services
This module contains the services that enables the communication of the DevOps Framework server with the following services:
 [image:]
[bookmark: _Toc20212731]Figure 14. Structure of the “services” module
The most important service is decide.gateway.service.ts, which provides the communication of the backend with the external manager. The alert.service.ts is a new addition in the final release, and it is in charge of managing notifications to the user, such as the “loading” notifications.
[bookmark: _Toc18578051][bookmark: _Toc20212710]DevOps Framework Server
This component contains the back-end code developed in Java (Spring framework).
It receives the requests from the front-end side and manages the communication between the web application and the Application Manager Service, and with the external services.
Below, the structure of this component is shown:
 [image:]
[bookmark: _Toc20212732]Figure 15. DevOps Framework Server’s file structure
The most relevant component is the AppManagerController, which handles the requests to the Application Manager to update the Application Description. A new class has been added in the final version, to handle user management.
The following services have been developed for DevOps framework server:
[image:]
[bookmark: _Toc20212733]Figure 16. Services of the DevOps Framework’s Server
It should be noted the integration service with Vault, responsible for storing and retrieving the secrets used in the system.
[bookmark: _Toc2183617][bookmark: _Toc2186260][bookmark: _Toc2187689][bookmark: _Toc2183618][bookmark: _Toc2186261][bookmark: _Toc2187690][bookmark: _Toc2183619][bookmark: _Toc2186262][bookmark: _Toc2187691][bookmark: _Toc2183623][bookmark: _Toc2186266][bookmark: _Toc2187695][bookmark: _Toc2183627][bookmark: _Toc2186270][bookmark: _Toc2187699][bookmark: _Toc2183628][bookmark: _Toc2186271][bookmark: _Toc2187700][bookmark: _Toc2183629][bookmark: _Toc2186272][bookmark: _Toc2187701][bookmark: _Toc2183631][bookmark: _Toc2186274][bookmark: _Toc2187703][bookmark: _Toc2183632][bookmark: _Toc2186275][bookmark: _Toc2187704][bookmark: _Toc2183634][bookmark: _Toc2186277][bookmark: _Toc2187706][bookmark: _Toc2183635][bookmark: _Toc2186278][bookmark: _Toc2187707][bookmark: _Toc2183636][bookmark: _Toc2186279][bookmark: _Toc2187708][bookmark: _Toc2183638][bookmark: _Toc2186281][bookmark: _Toc2187710][bookmark: _Toc2183639][bookmark: _Toc2186282][bookmark: _Toc2187711][bookmark: _Toc2183640][bookmark: _Toc2186283][bookmark: _Toc2187712][bookmark: _Toc2183641][bookmark: _Toc2186284][bookmark: _Toc2187713][bookmark: _Toc2183644][bookmark: _Toc2186287][bookmark: _Toc2187716][bookmark: _Toc2183645][bookmark: _Toc2186288][bookmark: _Toc2187717][bookmark: _Toc507153853][bookmark: _Toc507490186][bookmark: _Toc358299048][bookmark: _Toc463258806][bookmark: _Toc20212711]Installation instructions
This section refers to the instructions that would have to be followed if it were desired to install a local instance of the DevOps Framework.
To deploy the different containers, a docker compose configuration file has been created, so once the user begins the installation process, it starts the initialization of the required services in a background task. The user can also build the Docker images for each microservice by compiling the Dockerfile included in each module directory, but this could be a bit tedious, and the services should be instantiated in a certain order, so Spring Cloud modules are initialized correctly, and also because module may communicate with others.
The installation instructions, as well as the user manual presented in section 6.3 have remained unchanged since the previous release of the DevOps framework, reported in D2.7.
Installation requirements
· Have Docker tool installed in your machine and accessible from the terminal.
· Have Git installed, or just unzip the compressed file downloaded from the repository (see section 3.5).
· We also recommend running the DECIDE DevOps framework in a powerful machine, because the project is composed several Docker containers and that may consume some of your RAM resources. Our recommendation is to have a minimum of 4Gb RAM resources and about 1GB free for storage.

Getting started

1. Clone the DevOps framework Git repository in your computer.
2. Navigate to the main root directory of the project
3. Run in the console the command docker-compose up
4. It will automatically deploy all the microservices containers in your localhost domain. This deployment may take a few minutes (about 1 minute), to be fully configurated and accessible from your browser.
5. Access to the main DevOps framework web page in http://localhost:4000 in your local machine browser.
[bookmark: _Toc2183647][bookmark: _Toc2186290][bookmark: _Toc2187719][bookmark: _Toc2183648][bookmark: _Toc2186291][bookmark: _Toc2187720][bookmark: _Toc507490189][bookmark: _Toc358299049][bookmark: _Toc463258807][bookmark: _Ref2182215][bookmark: _Toc20212712]User Manual
As mentioned above, there is a deployment of the DevOps Framework available on http://85.91.40.245:8084/decide/ with the DECIDE KRs integrated.
 The following table shows the endpoints where each DECIDE component is deployed:
[bookmark: _Toc20212744]Table 3. Endpoints of DECIDE components
	Component
	Deployment port

	ADAPT

	ADAPT DO
	8081

	ADAPT monitoring
	8088

	VH
	8095

	MCSLA

	MCSLA service
	8082

	MCSLA ui
	8083

	Cloud Compendium
	8001

	AppController

	AppController
	Not required

	OPTIMUS

	OPTIMUS server
	8090

	ARCHITECT

	ARCHITECT server
	8001

	ACSmI

	ACSmI discovery registry
	-

	ACSmI discovery server
	8087

	ACSmI discovery client
	8087

	ACSmI contracting
	8089

	DevOps Framework

	Devops FW server
	8000/devopsframework-server

	Devops FW client
	8084

	Other components

	Jenkins
	8091

	SQ
	8092

	Grafana
	8093

	Shockshop UI
	8079

	Nginx GATEWAY
	8000

[bookmark: _Toc2183652][bookmark: _Toc2186295][bookmark: _Toc2187724][bookmark: _Toc2183653][bookmark: _Toc2186296][bookmark: _Toc2187725][bookmark: _Toc2183654][bookmark: _Toc2186297][bookmark: _Toc2187726][bookmark: _Toc2183655][bookmark: _Toc2186298][bookmark: _Toc2187727][bookmark: _Toc2183656][bookmark: _Toc2186299][bookmark: _Toc2187728][bookmark: _Toc2183657][bookmark: _Toc2186300][bookmark: _Toc2187729][bookmark: _Toc507153857][bookmark: _Toc507490191][bookmark: _Toc358299050][bookmark: _Toc463258808][bookmark: _Toc20212713]Licensing information
This component is offered under the MIT license.
[bookmark: _Toc20212714]Download
The source code is uploaded in WP2 DECIDE git repository and available here:
https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components/tree/master/DevOpsFramework
[bookmark: _Toc337747944]

[bookmark: _Toc358299052][bookmark: _Toc463258810][bookmark: _Toc20212715]Conclusions
This document has presented the third prototype of the DevOps framework, corresponding to the M33 and final release. The new functionalities have been described, such as the implementation of the state machine and the UI changes. The pipelines that have been set up to deploy the different components have also been described.
The document also contains a description of the prototype from a functional and a technical point of view, and it contains usage and installation instructions for the component.

[bookmark: _Toc20212716]References

[1] 	DECIDE Consortium, D2.7 Intermediate DECIDE DevOps Framework Integration, 2019.
[2] 	DECIDE Consortium, “D2.2 Detailed requirements specification v2,” 2018.
[3] 	DECIDE Consortium, “D2.1 - Detailed requirements specification v1,” 2017.
[4] 	DECIDE Consortium, “D2.6 Initial DECIDE DevOps Framework Integration,” 2018.
[5] 	Google, "Material Design," [Online]. Available: https://material.io/. [Accessed 20 February 2018].
[6] 	DECIDE Consortium, “AppManager,” 2018. [Online]. Available: https://git.code.tecnalia.com/decide/WP3/tree/master/AppManager. [Accessed 20 February 2018].
[7] 	Hashicorp, "Vault documentation," 2019. [Online]. Available: https://learn.hashicorp.com/vault/secrets-management/sm-static-secrets. [Accessed 20 February 2019].
[8] 	Hashicorp, "Introduction to Vault," 2019. [Online]. Available: https://www.vaultproject.io/docs/what-is-vault/index.html. [Accessed 20 February 2019].
[9] 	DECIDE Consortium, “D2.5 DECIDE Detailed architecture,” 2018.
[10] 	DECIDE Consortium, “D4.2-Intermediate DECIDE ADAPT Architecture,” 2018.
[11] 	DECIDE consortium, “D2.4 Detailed architecture v1,” 2017.
[12] 	DECIDE Consortium, “D2.3 Integration and validation strategy,” 2017.

[bookmark: _Toc20212717][bookmark: _Ref2184082]Annex A. DECIDE Components’ UI
[image:]
[bookmark: _Toc20212734]Figure 17. ARCHITECT’s UI
[image:]
[bookmark: _Toc20212735]Figure 18. OPTIMUS’ UI

[image:]
[bookmark: _Toc20212736]Figure 19. MCSLA’s UI
[image:]
[bookmark: _Toc20212737]Figure 20. ACSmI Discovery’s UI

[image:]
[bookmark: _Toc20212738]Figure 21. ACSmI Contracting’s UI
[image:]
[bookmark: _Toc20212739]Figure 22. ADAPT DO’s UI (1)

[image:]
[bookmark: _Toc20212740]Figure 23. ADAPT DO’s UI (2)
[image:]
[bookmark: _Toc20212741]Figure 24. ACSmI Monitoring’s UI

© DECIDE Consortium 	 Contract No. GA 731533	Page 43 of 44
www.decide-h2020.eu	[image:]

image1.jpeg
decide

MULTICLOUD APPLICATIONS TOWARDS
THE DIGITAL SINGLE MARKET

image2.png
Development Production

o0 0
 Development is « “Alpha” tool versions * Only stable tool versions
performed locally * For testing new functionalities * For use cases testing

and integration ¢ Updated every 15 days

¢ Updated daily and on demand

e U

image3.png
deployment Automatic

redeployment

basiclnfo Monitoring

ARCHITECT DevOps FW

violation 0

deployment hightTechRisk

basiclnfo (ADAPT DO

(& Billing)

patterns|

basiclnfo
basiclnfo

contracts

basiclnfo

ACSmI
Contracting

OPTIMUS

image4.png
@ DevOps Framevork x o+ =

C @ localhost:4200/decide/dashboard *

[l Epeis [1 Cursodnsible [] Scum [0 Treo 2 Ventajas Manpower.. @ MiCompensacion @ poweYOU / Home Page-Solict.. @ Intranet Manpower @ MIAPA

-2

decide - © /s M g * emsenreses 2

Patterns

ghj

mm

tion

pment

Depl

Multicloud S|

Q Jenkins '\\ SonarQube

Cloud services discovery

(] ~” Name o] o. Ox [>] Name & sucs &) Vuinerabilties © code smells @ coverage o
Cloud services contracting
No jobs found
Deployment
Billing
Mot 'SELECTED NFRS MICROSERVICES
ilability 9 Location Name Tags
Level: High - Type: Single Location - catalogue ® Application
Availability: 99 % Region/Zone: s ® application
Europe/Germany e contiion
payment W Application
queus-master W Application

shipping W Application

image5.png
«component»
g:l Application Description

App. Dercription updates

«component»
= | Application Controller

1 DevOps Framework

«component»
= | DevOps FE

«component»

O

App. Description updates

= | DevOps BE

«component»
= | Vault

«component»
= | state Machine

KRn Ul

BE data

ive data

State update

«component»
= |KRn UI

«component»
= | KRn BE

image6.png
Jenkins

ARCHITECT SonarQube
Vault
State machine
OPTIMUS
MCSLA (UI) MCSLA (service)
Discovery
AGSm Contracting
Billing
ADAPT < DO
Monitoring

DevOps (server) Users
Apps

-

App. Manager |

image7.png
[————

Report a new application state in the system

Parameters
Name Description
St " State that wants to be reported
&2 Example Value | Model
Responses
Code Description
200
successtu operation
401
Unauthorized
403
Fortidden
404

Not Found

Response content type.

Try it out

application/json

image8.png
Jgetstate cutmeseotsienen

Get the appiication state

Parameters Ty itout
Name. Description

data ™ " b o st machine

(body) Exampie Valve | ode!

Responses Response contenttype [applicationison >
Code Description

20

successtul oparaton

Example Value | Node!

03

Fomisten

o NtFound

image9.png
decude

Patterns recommendation

Deployment simulation

Multicloud SLA

Cloud services discovery

Cloud services contracting

«® Deployment

Monitoring

@ Biling

image10.png
‘acsmi-contracting
acsmi-discovery

adapt-monitoring
adapt:
architect

components
dashboard
dialogs
guards
home
login
mesla
microservice-editor
modal
models
nfr-editor
notifications
optimus
4 senvices
TS appchangeservicets
TS authentication.service.s
TS decide gateway servicets
> upgrade
» user-profile
> wizard
4 wizard-step
wizard-step.component.css
< wizard-step.componenthtml
TS wizard-step.component.spects
TS wizard-step.componentts
app.component.css
< app.componenthtml
TS app.component.spects
TS app.componentts
TS app.modulets
TS app.routingts
» assets
4 environments
TS environment maquetats
TS environment prodts

image11.png
Kidiv class="main-content"| b getNFRW. Aa Bl * NoResults x
<div class="">
<div class="">
<div class="col-md-12">
<div clas: >

<h3>{{selectedApp.name}}</h3>

<div class="card-content">

<div class="iframe-container hidden-sm hidden-xs">

<iframe [src]='getAcsmiContractingPath()' style="display:block; width:100%; height:8evh;">

<p>Your browser does not support iframes.</p>

</iframe>
</div>
<div class="col-md-6 hidden-1g hidden-md text-center”>

<h5>The icons are visible on Desktop mode inside an iframe. Since the iframe is not working on Mobile and Tablet:
</div>

image12.png
constructor(private decideGatewayService: DecideGatewayService, private appChangeService:AppChangeService, private sanitizer:DomSanitizer)

¥
ngonInit() {
‘this.appChangeService.decideProjectobservable.subscribe(
data => {

this.selectedApp = data;
this.updateAcsmiDiscoveryPath();

bH

image13.png
//Acsmi Billing
endpoint= environment.apiAcsn:
acsmi_billing ui_path;

Billing;

constructor(private decideGatewayservice: DecideGatewayservice, private appChangeService:AppChangeservice, private sanitizer:Domsanitizer) {

b

ngonInit() {
this.appChangeService.decideProjectObservable. subscribe(
data => {

this.selectedApp = data;
this.updateAcsmiBillingPath();
bH

this.currentUser = JSON.parse(localStorage. getItem(’ currentUser'));

image14.png
» footer
» navbar
» sidebar

image15.png
4 models

TS architect pagets
75 decideappits
75 decide projectts
S userauthts

image16.png
v services

image17.png
> devopsframework-server [Devopsframework master]
v @ src/mainfjava

> 3 euh2020 devopsframeworkserver

> 3 w2020 devopsframemorksever.config

v euh2020.devopsframework.server.controller

> [1) AppManagerControlierjava

[AuthenticationControllrjva
[3) SecuredControllerjava
[3 SignUpController]
[} UserControllerjava.

image18.png
v ¥ > devopsframework-server [Devopsiramework master]

~ 3 src/main/java

> 3 euh2020 devopsframeworkserver
> 3 euh2020 devopsframework.server security
> 3 euh2020.devopsframework.server security.constants
> 83 euh2020 devopsframework.senver security fiter
> 3 w2020 devopsframework.server security.senvice
8 cuh2020.devopsframework serverservice

> [} BasicUserSenvicejava

> [} SenviceGeneratorjava

s B Userseniceiova

> [} Vaultsenvicejova

image19.png
Archivo Insertar Disefio

B

==
2" Copiar formato

Portapapeles &

Pagina 21 de 54 8554 palabras

Disposicién

MUEMEY

N K S -abx X

Fuente

és (Reino Unido)

Reterencias
A Aa- fe
A-%-a-

Correspondencia

Revisar

Vista

D2.8. Final DECIDE DevOps Framework Integration_v0.1.da

Ayuda Q Qué desea hacer?

asEpceDar faBbCoba] | AaBbCcDC| AaBbCcDc 1 AaBl 1.1 AaF 1.1.1 Az 1.1.114 11111

7Cédigo | TNormal | 1Sin espa... DECIDE Tit.. DECIDETit.. DECIDET.

jations

DECIDE Tt

Estilos

Jose Manuel Lépez (

£ Compartc

P Buscar ~
12222 AQADB aseoccr acsbcene acsbcene | o, P—
Thio? Thulo

Subtitulo Enfasis sutil Enfasis

[} Seleccionar -

r. Edidisn -~

V% (ctr) -

3 + 120%

@ DevOps Framevork x o+

< c

[l Epeis [1 Cursodnsile [] Scum [0 Treo 2 Ventajas Manpower.. @ MiCompensacion @ powerYOU

décide

recommendation

Deployment simulation

Multicloud SLA

Cloud services contracting

Monitoring

@ localhost:4200/decide/architect

Home Page -Solicit.. @ Intranet Manpower @ MIAPA

Patterns recommendation

ghj

Pattern Recommendations

Below are the recommended architectural pattems based on your project's non functional requirements. Please, select the pattems

that you are willing to adopt. Your selections will be taken into account during the next steps.

QO Nogrouping (@ Grouped by requirement (O Grouped by category CCONFIRM SELECTION

General recommendations

Distributed Application
Why to pos

on functionali

0 multiple, indepe

| B2

3]
e’

Managed Configuration
guration o

How can the confi

controlled ina c

hion?

Service Registry
Hox S

and deployed

Three-Tier Cloud Application
When to decompose presentation

Two-Tier Cloud Application
Why separate 3 application in

@) @ © [

Pattems affecting Availabili

o PVTRN

Patterns Compendium

Distributed Application

’i Loose Coupling

Managed Configuration

e Service Registry

Three-Tier Cloud Application

Two-Tier Cloud Application

Automatically Defined Perimeter

Cloud Authentication Gateway

EXPERISQEXPERISES &

image20.png
@ DevOps Framevork x

+

€ > C @ localhost4200/decide/optimus

[Bperis

[Curso Ansible [Scrum

@ Trelo 22 Ventajas Manpower.. @ MiCompensacion @ powerYOU

Home Page -Solicit.. @ Intranet Manpower @ MIAPA

Deployment simulation

décide

Dashboard

Patterns recommendation

Multi-cloud SLA
Cloud services discovery
Cloud services contracting
Deployment

Billing

Monitoring

Deployment simulation

Microservices List

SockShop

catalogue

carts

orders

payment

queuemaster

o PVTRN

EXPERISQEXPERISES &

Microservice Edit Simulate

Add Front end parameters

Public Ip

Classification
Computing Public Ip

Endpoint

Deployment order
undefined

Infrastructure Requirements

Disk
100

Memory

20

CPUCores
1

Resource

Add Detachable Resource o

image21.png
Archivo

i

Pegar

Insertar

2% Copiarormto

Portapapeles &

Pagina 22 de 55

5554 palabras

Disefio Disposicion
MUEMEY
N K S -abex, X

Fuente

Inglés (Reino Unido)

Referencias Correspondencia

N Aa- | B

A-%-a-

Revisar

Parrafo

D2.8. Final DECIDE DevOps Fram:

Vel Ayucia OB o desen haees?
aappCeDar faBbCond] | AaBbCcDC| AaBbCcDc 1 AaBl 1.1 AaF 111 As 1.1.1.71 4 11111. 11111] AQB assocer acsbeco aasbeeoc .
TCode TCdigo | TNormal | fSinespa.. DECIDETH.. DECIDETit.. DECIDET:.. DECIDET. TruloS Thulo7 Thuo Subtitulo Enfosissut fnfosis |
5 Esilos 5

t end parameters

5 Implementation

5.1 Functional description

The DECIDE DevOps Framework is the platform from which the different Key Results will be accessed.
Its main purpose is to offer an intuitive interface to the user where they can set up a specific multi-
cloud native application and consume any of the other tools integrated in the system. The framework
provides an entry point to DECIDE and handles the interconnection between all the elements involved,
providing a global overview about the state of the application to the end user. Furthermore, the
DevOps Framework takes care of the user and application management and provides the necessary
infrastructure to safelv store and share sensitive information. Lastlv. the latest version of the DevOps

@ DevOps Framework x + - X
8 compartic [0 C @ localhost4200/decide/mesla " @
£ Buscar - [Bperis [] CusoAnsble [Scum [Trelo 2. VentajosManpower.. @ MiCompensacion @ powertOU Home Page - Solict.. @ Intranet Manpower @ MIAPA
2 Reemplazar
T .
D e geelde. © /10 M EXPERISQEXPERISES &
Dashi
ghj
Patterns recom: dation
. Application Multi-Cloud SLA POF EXPORT
Test_0409 Service Level Agreement & visivilty
Cloud services discovery
Add covered service +
Cloud services contracting Cov Al
Deployegs Availability v
SN Location v
Monitoring

commIT

‘ RESET ‘

Cloud Services SLAs

+ 120%

image22.png
Archivo

i

Pegar

Insertar

2% Copiarormto

Portapapeles &

Pagina 22 de 55

5554 palabras

Disefio

Disposicién

R

N K S -abx X

Fuente

Inglés (Reino Unido)

ars

Referencias
N Aa- | B

A-%-a-

Correspondencia

Revisar

Parrafo

D2.3. Final DECIDE D

Informa

Vita Apda Q ;Ouédeseahacer?

£ Compartc

P Buscar ~
asmocco: [aBbccnal |AaBbCcDc| AaBbCcDc 1 AaBl 1.1 Aaf 111 Az 22214 11111, 12222 AAB aseoccr aosbcene acsbcene — | o, -
TCode TCedigo | TNomal | 7Sinespa DECIDET. DECIDETh., DECDETR. DECIDETC. TioS Tao? Tao Subtiulo nfossutl ffasis 1< | | (o tn
5 stios 5l Ediden ~
erw a

Microservices List

=== T Add Front end parameters
ey

e

ication Multi-Cloud SLA

+ 120%

@ DeOps Framevork x o+ =
<« C @ localhost:4200/decide/acsmi-discovery Y %
[1 Bperis [] Cusoansble [Scum [Trelo 2. VentsjasManpower.. @ MiCompensacien @ powertOU HomePage-Solict.. @ Intranet Manpower @ MIAPA
-2
decide

Patterns recommendation
Deployment simulation
Multi-cloud SLA

Cloud services discovery

Cloud services contracting

Deployment
illing
Monitoring

Cloud services discovery

o PVTRN

EXPERISQEXPERISES &

ghj

Ay
_déclde ACSmI :: Advanced Cloud Service meta Intermediator

A Home iscover~

Entites~ ¥ Legal assessment & Account~ ¥ Administration +

Welcome to ACSml!

nced C

a Intermediator

You are logged in as user "admin".

Service mapping:

Amazon CloudSigma

Database 0 service(s)

4 service(s) 0 service(s) 2 service(s) 2 service(s) 0 service(s)

Storage 0 service(s) 2 service(s) 4 service(s) 3 service(s) 2 service(s) 0 service(s)

Virtual Machine 0 service(s) 11 senvice(s) 9 service(s) & service(s) 2 service(s) 1 senvice(s)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 731533

image23.png
Archivo Insertar Disefio Disposicidn Referencias Correspondencia Revisar

) Clbi -[11 <K A Aa- e
== . C p-w-A-
T & Copiarformate | M K S e X [Q- - A
rotapapetes 1 Fuente 5 vimato

Pagina23de 56 8554 palabras

Inglés (Reino Unido)

D2.8. Final DECIDE DevOps Framework Integration_v0.1.da Jose Manuel Lépez (

Q Qué deses hacer? 2 Compartic

£ Buscar -

12222 AQADB aseoccr acsbcene acsbcene | o, P—

AaBbCcDc| AaBbCcDc 1 AaBl 1.1 Aaf 1.1.1 As 1.0.1.1 4 11111

< TCode Cédigo | TNommal | 7Sinesps.. DECDET:. DECIDET.. DECIDET:. DECDET. TrwioS Thuo7 Thul Subthulo Enfasicautl Enfasic <) | [cqo
5 Estios ol dicon ~
PP Pyt . .
atcise - .
ot

5 Implementation

5.1 Functional description

The DECIDE DevOps Framework is the platform from which the different Key Results will be accessed.
Its main purpose is to offer an intuitive interface to the user where they can set up a specific multi-
cloud native application and consume any of the other tools integrated in the system. The framework
provides an entry point to DECIDE and handles the interconnection between all the elements involved,
providing a global overview about the state of the application to the end user. Furthermore, the
DevOps Framework takes care of the user and application management and provides the necessary
infrastructure to safely store and share sensitive information. Lastly, the latest version of the DevOps
Framework controls the DECIDE workflow, enabling tools as they are ready to be used and triggering
the corresponding component when appropriate.

+ 120%

@ DevOps Framework x
< c
] Experis] CursoAnsible [Scrum
¢ -2
decide
Patterns recommendation
Multi-cloud SLA
Clo discovery
Cloud services contracting

Deployment

Monitoring

+

@ localhost4200/decide/acsmi-contracting

@ el

2. Ventajas Manpower.

@ Wi Compensacién

Cloud services contracting

ghj

@ powertOU © Home Page - Solicit.. @ Intranet Manpower @ MIAPA

o PP

ACSmI Contracting

Welcome to ACSmI Contracting

Please log in to manage your contracts.
Please use the corresponding component of the DECIDE Framework to set up new contract

Try ACSmI directly (for demo / testing purposes)

EXPERISQEXPERISES &

image24.png
@ DeOps Framevork x o+

€ > C @ localhost4200/decide/adapt

[Epeis [Cursodnsible [] Scum [Trello

LAD
decide

Dashboard

Patterns recommendation

Deployment simulation

Multicloud SLA

Cloud services discovery

Cloud services contracting

giling

Monitoring

. Ventsjos Manpower.. @ MiCompensacion @ power¥OU Home Page - Solit.. @ Intranet Manpower @ MIAPA

TITaS U UCTUNe Preparauurm Statd N

Preparing environment

Step1 Step2 ESH Step4

ADAPT endpoint
P 82223.81.97 PORT 8473
Application

APPLICATION NAME:

Test_0409
Git

URL: https:/git code tecnalia.com/decide/Sockshop_AppDescription git
TOKEN: bYVYNSTPTC_BrfkPBGWe

REVISION: HEAD FILEPATH DECIDE json

image25.png
@ DeOps Framevork x o+

€ > C O localhost4200/decide/adapt * B =S
[l Epeis [1 Cursodnsible [] Scum [0 Treo 2 Ventajas Manpower.. @ MiCompensacion @ poweYOU / Home Page-Solict.. @ Intranet Manpower @ MIAPA
-2
decide
bt b bd step1 step2 Step3 Stepa.

= Dashboard ‘SUBMIT PREPARATION STEP ‘SUBMIT ONE SHOT DEPLOYMENT (ALL-IN-ONE DEPLOYMENT STEP) DESTROY ALL

Deployment steps

Patterns recommendation

Deployment simulation 1IN INFRASTRUCTURE 2 PLAN INFRASTRUCTURE 6. APPLY INFRASTRUCTURE

Multi-cloud SLA id id: id
operation: init operation: init operation: init
environment: infrastructure environment: infrastructure environment: infrastructure
Cloud services discovery status: off status: off status: off
elapsed: secs. elapsed: secs. elapsed: secs

Cloud services contracting U) U U

Deployment
Billing 4. INIT SERVICES 5. PLAN SERVICES 6. APPLY SERVICES

Monitoring d jd [
operation: init operation: init operation: init
environment: services environment: services environment. services
status: off status: off status: off
elapsed secs. elapsed: secs elapsed secs

image26.png
D28, Final DECIDE DevOps Framewark Integration_vi.1.docx - Word Jose Manuel Lépez (fécnico Informatico) [l @ BBl @ 0ev00s Framevork x4 =

Inicio Disefio Disposicién Referencias Correspondencia Revisar Vista Ayuda @ ;Qué desea hacer? 5, Compartir <« C @ localhost:4200/decide/adapt-monitoring *

) Cabi [- & A Aa- B | -

Buscar - [l Epeis [1 Cursodnsible [] Scum [0 Treo 2 Ventajas Manpower.. @ MiCompensacion @ poweYOU / Home Page-Solict.. @ Intranet Manpower @ MIAPA
< | 25 Reemplazar

L9 | sasbcens fambonal |AaBbede| Assbeede 1 AaBl 1.1 AaF 111 A 22214 11111, 12222 QB assbece aasbeeo: aasbeen

Pegar - - - - ode 6digo lormal in espa. it it it it itulo. itulo 7 itulo. Subtitulo Enfasis sutil Enfas - -
9 ¢ Copiarformato | NI K - %< . x A = | & 7 Cod TCodigo | TNormal | TSin espa... DECIDETit.. DECIDETit.. DECIDETit.. DECIDETit.. Ttulo5 Tl Titul [y— d “a
R o e B o 5 _— P B decide — EI—— o ., © oeensmommes 2
didite -) Dashbo
Patterns recommendation
Deployment simulation
.
- Multi-cloud Si
Cloud services discovery
Cloud services contracting
=1
. B NeEE Deployment
a.

iling

-]

munity | Grafana
Pagina 24 de 57 8554 palabras (% Inglés Reino Unido) 3 B - 1 + 120%

17

T m O 0 B) A EEEE N EEEEY: fewDe 00 B @ M a 0 6 B e 0 0 % @ @ @ & & D

image27.png

